DOI QR코드

DOI QR Code

Molecular Dynamics Investigation of the Effects of Concentration on Hydrogen Bonding in Aqueous Solutions of Methanol, Ethylene Glycol and Glycerol

  • Zhang, Ning (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology) ;
  • Li, Weizhong (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology) ;
  • Chen, Cong (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology) ;
  • Zuo, Jianguo (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology) ;
  • Weng, Lindong (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology)
  • Received : 2013.04.13
  • Accepted : 2013.06.20
  • Published : 2013.09.20

Abstract

Hydrogen bonding interaction between alcohols and water molecules is an important characteristic in the aqueous solutions of alcohols. In this paper, a series of molecular dynamics simulations have been performed to investigate the aqueous solutions of low molecular weight alcohols (methanol, ethylene glycol and glycerol) at the concentrations covering a broad range from 1 to 90 mol %. The work focuses on studying the effect of the alcohols molecules on the hydrogen bonding of water molecules in binary mixtures. By analyzing the hydrogen bonding ability of the hydroxyl (-OH) groups for the three alcohols, it is found that the hydroxyl group of methanol prefers to form more hydrogen bonds than that of ethylene glycol and glycerol due to the intra-and intermolecular effects. It is also shown that concentration has significant effect on the ability of alcohol molecule to hydrogen bond water molecules. Understanding the hydrogen bonding characteristics of the aqueous solutions is helpful to reveal the cryoprotective mechanisms of methanol, ethylene glycol and glycerol in aqueous solutions.

Keywords

References

  1. Dudzinski, D. M. J. Pediatr. Adolesc. Gynecol. 2004, 17(2), 97-102. https://doi.org/10.1016/j.jpag.2004.01.004
  2. Canavate, J. P.; Lubi n, L. M. Aquaculture 1995, 136(3-4), 277-290. https://doi.org/10.1016/0044-8486(95)01056-4
  3. He, Z.; Liu, H.-C.; Rosenwaks, Z. Fertil. Steril. 2003, 79(2), 347-354. https://doi.org/10.1016/S0015-0282(02)04674-5
  4. Mazur, P. J. Gen. Physiol. 1963, 47, 347-369. https://doi.org/10.1085/jgp.47.2.347
  5. Jacobs, M. H. J. Cell Comp. Physiol. 1933, 2(4), 427-444. https://doi.org/10.1002/jcp.1030020405
  6. Kedem, O.; Katchalsky, A. Biochim. Biophys. Acta 1958, 27, 229-246. https://doi.org/10.1016/0006-3002(58)90330-5
  7. Chen, H. H.; Purtteman, J. J. P.; Heimfeld, S.; Folch, A.; Gao, D. Cryobiology 2007, 55(3), 200-209. https://doi.org/10.1016/j.cryobiol.2007.08.001
  8. Karlsson, J. O. M.; Cravalho, E. G.; Toner, M. J. Appl. Phys. 1994, 75(9), 4442-4455. https://doi.org/10.1063/1.355959
  9. Karlsson, J. O. M.; Toner, M. Biomaterials 1996, 17(3), 243-256. https://doi.org/10.1016/0142-9612(96)85562-1
  10. Toner, M.; Cravalho, E. G. J. Appl. Phys. 1990, 67(3), 1582-1593. https://doi.org/10.1063/1.345670
  11. Toner, M.; Cravalho, E. G.; Karel, M.; Armant, D. R. Cryobiology 1991, 28(1), 55-71. https://doi.org/10.1016/0011-2240(91)90008-C
  12. Storey, K. B.; Baust, J. G.; Buescher, P. Cryobiology 1981, 18(3), 315-321. https://doi.org/10.1016/0011-2240(81)90104-8
  13. Li, S.; Dickinson, L. C.; Chinachoti, P. J. Agr. Food Chem. 1998, 46(1), 62-71. https://doi.org/10.1021/jf9609441
  14. Franks, F. Cryobiology 1983, 20(3), 335-345. https://doi.org/10.1016/0011-2240(83)90022-6
  15. Lovelock, J. E. Biochem. J. 1954, 56(2), 265-270.
  16. Zdenek, H. Cryobiology 2003, 46(3), 205-229. https://doi.org/10.1016/S0011-2240(03)00046-4
  17. Towey, J. J.; Soper, A. K.; Dougan, L. Phys. Chem. Chem. Phys. 2011, 13(20), 9397-9406. https://doi.org/10.1039/c0cp02136a
  18. Kyrychenko, A.; Dyubko, T. S. Biophys. Chem. 2008, 136(1), 23-31. https://doi.org/10.1016/j.bpc.2008.04.004
  19. Dashnau, J. L.; Nucci, N. V.; Sharp, K. A.; Vanderkooi, J. M. J. Phys. Chem. B 2006, 110(27), 13670-13677. https://doi.org/10.1021/jp0618680
  20. Chen, C.; Li, W. Z.; Song, Y. C.; Yang, J. J. Mol. Liq. 2009, 146(1-2), 23-28. https://doi.org/10.1016/j.molliq.2009.01.009
  21. Chen, C.; Li, W. Z.; Song, Y. C.; Yang, J. J. Mol. Struc-theochem. 2009, 916(1-3), 37-46. https://doi.org/10.1016/j.theochem.2009.09.007
  22. Weng, L.; Chen, C.; Zuo, J.; Li, W. J. Phys. Chem. A 2011, 115(18), 4729-4737. https://doi.org/10.1021/jp111162w
  23. Weng, L.; Li, W.; Zuo, J.; Chen, C. J. Chem. Eng. Data 2011, 56(7), 3175-3182. https://doi.org/10.1021/je2002607
  24. Tu, Y.; Fang, H. Phys. Rev. E 2009, 79(1), 016707. https://doi.org/10.1103/PhysRevE.79.016707
  25. Padro, J. A.; Saiz, L.; Guardia, E. J. Mol. Struct. 1997, 416(1-3), 243-248. https://doi.org/10.1016/S0022-2860(97)00038-0
  26. Chen, C.; Li, W.; Song, Y.; Yang, J. Mol. Phys. 2009, 107(7), 673-684. https://doi.org/10.1080/00268970902852632
  27. Chen, C.; Li, W.-Z. Acta Phys. -Chim. Sin. 2009, 25(3), 507.
  28. Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kale, L.; Schulten, K. J. Comput. Chem. 2005, 26(16), 1781-1802. https://doi.org/10.1002/jcc.20289
  29. Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W. ; Klein, M. L. J. Chem. Phys. 1983, 79(2), 926-935. https://doi.org/10.1063/1.445869
  30. MacKerell, A. D.; Bashford, D.; Bellott, Dunbrack, R. L.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F. T. K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom, B.; Reiher, W. E.; Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.; Straub, J.; Watanabe, M.; Wiorkiewicz-Kuczera, J.; Yin, D.; Karplus, M. J. Phys. Chem. B 1998, 102(18), 3586-3616. https://doi.org/10.1021/jp973084f
  31. Reiling, S.; Schlenkrich, M.; Brickmann, J. J. Comput. Chem. 1996, 17(4), 450-468. https://doi.org/10.1002/(SICI)1096-987X(199603)17:4<450::AID-JCC6>3.0.CO;2-T
  32. Martyna, G. J.; Tobias, D. J.; Klein, M. L. J. Chem. Phys. 1994, 101(5), 4177-4189. https://doi.org/10.1063/1.467468
  33. Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98(12), 10089-10092. https://doi.org/10.1063/1.464397
  34. Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J. C. J. Comput. Phys. 1977, 23(3), 327-341. https://doi.org/10.1016/0021-9991(77)90098-5
  35. Sarkisov, G. N.; Dashevsky, V. G.; Malenkov, G. G. Mol. Phys. 1974, 27(5), 1249-1269. https://doi.org/10.1080/00268977400101101
  36. Stillinger, F. H.; Rahman, A. J. Chem. Phys. 1972, 57(3), 1281- 1292. https://doi.org/10.1063/1.1678388
  37. Loof, H. D.; Nilsson, L.; Rigler, R. J. Am. Chem. Soc. 1992, 114, 4028-4035. https://doi.org/10.1021/ja00037a002
  38. Luzar, A.; Chandler, D. Phys. Rev. Lett. 1996, 76(6), 928. https://doi.org/10.1103/PhysRevLett.76.928
  39. Luzar, A.; Chandler, D. Nature 1996, 379(6560), 55-57. https://doi.org/10.1038/379055a0
  40. Noskov, S. Y.; Lamoureux, G.; Roux, B. J. Phys. Chem. B 2005, 109(14), 6705-6713. https://doi.org/10.1021/jp045438q
  41. Jedlovszky, P.; Turi, L. J. Phys. Chem. B 1997, 101(27), 5429-5436. https://doi.org/10.1021/jp963906t
  42. Marques, M. P. M.; Amorim da Costa, A. M.; Ribeiro-Claro, P. J. A. J. Phys. Chem. A 2001, 105(21), 5292-5297. https://doi.org/10.1021/jp0046041
  43. Zhang, R.; Li, H.; Lei, Y.; Han, S. J. Phys. Chem. B 2005, 109(15), 7482-7487. https://doi.org/10.1021/jp044566b
  44. Dougan, L.; Bates, S. P.; Hargreaves, R.; Fox, J. P.; Crain, J.; Finney, J. L.; Reat, V.; Soper, A. K. J. Chem. Phys. 2004, 121(13), 6456-6462. https://doi.org/10.1063/1.1789951
  45. Towey, J. J.; Soper, A. K.; Dougan, L. J. Phys. Chem. B 2011, 115(24), 7799-7807. https://doi.org/10.1021/jp203140b
  46. Guardia, E.; Marti, J.; Garcia-Tarres, L.; Laria, D. J. Mol. Liq. 2005, 117(1-3), 63-67. https://doi.org/10.1016/j.molliq.2004.08.004
  47. Washburn, E. W. (Knovel, U.S., 2003).
  48. Guardia, E.; Marti, J.; Padro, J. A.; Saiz, L.; Komolkin, A. V. J. Mol. Liq. 2002, 96-97, 3-17. https://doi.org/10.1016/S0167-7322(01)00342-7
  49. Weng, L.; Li, W.; Zuo, J. Cryobiology 2011, 62(3), 210-217. https://doi.org/10.1016/j.cryobiol.2011.03.005
  50. Elola, M. D.; Ladanyi, B. M. J. Chem. Phys. 2006, 125, 184506. https://doi.org/10.1063/1.2364896
  51. Iulian, O.; Ciocirlan, O. Rev. Roum. Chim. 2010, 55, 45-53.

Cited by

  1. Amplification of Hofmeister Effect by Alcohols vol.118, pp.26, 2014, https://doi.org/10.1021/jp504317j
  2. Low-Density Water Structure Observed in a Nanosegregated Cryoprotectant Solution at Low Temperatures from 285 to 238 K vol.120, pp.19, 2016, https://doi.org/10.1021/acs.jpcb.6b01185
  3. Molecular dynamics simulation of content of bound water in ethylene glycol and glycerol solution vol.43, pp.12, 2017, https://doi.org/10.1080/08927022.2017.1313416
  4. Effects of natural deep eutectic solvents on lactic acid bacteria viability during cryopreservation vol.102, pp.13, 2018, https://doi.org/10.1007/s00253-018-8996-3
  5. Glucose Glycation of α-Lactalbumin and β-Lactoglobulin in Glycerol Solutions vol.66, pp.40, 2013, https://doi.org/10.1021/acs.jafc.8b03544