DOI QR코드

DOI QR Code

Two-dimensional Oxygen Distribution in a Surface Sediment Layer Measured Using an RGB Color Ratiometric Oxygen Planar Optode

RGB color ratiomatric planar optode로 측정한 표층 퇴적물의 2차원 산소 분포

  • Lee, Jae Seong (Oceanographic Measurement & Instrument Calibration Service Center, KIOST) ;
  • Kim, Eun-Soo (Ocean Observation Technology & Information Department, KIOST) ;
  • An, Sung-Uk (Oceanographic Measurement & Instrument Calibration Service Center, KIOST) ;
  • Kim, Jihye (Oceanographic Measurement & Instrument Calibration Service Center, KIOST) ;
  • Kim, Joung-Keun (Marine Environments & Conservation Research Division, KIOST) ;
  • Khang, Sung-Hyun (Oceanographic Measurement & Instrument Calibration Service Center, KIOST) ;
  • Kang, Dong-Jin (Oceanographic Measurement & Instrument Calibration Service Center, KIOST)
  • 이재성 (한국해양과학기술원 기기검교정.분석센터) ;
  • 김은수 (한국해양과학기술원 해양관측기술.자료본부) ;
  • 안성욱 (한국해양과학기술원 기기검교정.분석센터) ;
  • 김지혜 (한국해양과학기술원 기기검교정.분석센터) ;
  • 김종근 (한국해양과학기술원 해양환경.보전연구부) ;
  • 강성현 (한국해양과학기술원 기기검교정.분석센터) ;
  • 강동진 (한국해양과학기술원 기기검교정.분석센터)
  • Received : 2013.05.27
  • Accepted : 2013.07.03
  • Published : 2013.09.30

Abstract

We measured two-dimensional (2-D) oxygen distribution in the surface sediment layer of intertidal sediment using a simple and inexpensive planar oxygen optode, which is based on a color ratiometric image approach. The recorded emission intensity of red color luminophore light significantly changed with oxygen concentration by $O_2$ quenching of platinum(II)octaethylporphyrin (PtOEP). The ratios between the intensity of red and green emissions with oxygen concentration variation demonstrated the Stern-Volmer relationship. The 2-D oxygen distribution image showed microtopographic structure, diffusivity boundary layer and burrow in surface sediment layer. The oxygen penetration depth (OPD) was about 2 mm and the one-dimensional vertical diffusive oxygen uptake (DOU) was 12.6 mmol $m^{-2}d^{-1}$ in the undisturbed surface sediment layer. However, those were enhanced near burrow by benthic fauna, and the OPD was two times deeper and DOU was increased by 34%. The simple and inexpensive oxygen planar optode has great application potential in the study of oxygen dynamics with high spatiotemporal resolution, in benthic boundary layers.

Keywords

References

  1. Canfield DE, Thamdrup B, Kristensen E (2006) The oxygen cycle. In: Canfield, DE, Thamdrup B, Kristensen E (eds) Aquatic Geomicrobiology. Elsevier, San Diego, pp 167-202
  2. Frederiksen MS, Glud RN (2006) Oxygen dynamics in the rhizosphere of Zostera marina: A two-dimensional planar optode study. Limnol Oceanogr 51(2):1072-1083 https://doi.org/10.4319/lo.2006.51.2.1072
  3. Froelich PN, Klinkhammer GP, Bender ML, Luedtke NA, Heath GR, Cullen D, Dauphin P, Hammond D, Hartman B, Maynard V (1979) Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis. Geochim Cosmochim Acta 43(7):1075-1090 https://doi.org/10.1016/0016-7037(79)90095-4
  4. Glud RN, Ramsing NB, Gundersen JK, Klinant I (1996) Planar optrodes: a new tool for fine scale measurements of two-dimensional $O_2$ distribution in benthic communities. Mar Ecol Prog Ser 140:217-226 https://doi.org/10.3354/meps140217
  5. Glud RN, Kuhl M, Kohls O, Ramsing NB (1999) Heterogeneity of oxygen production and consumption in a photosynthetic microbial mat as studied by planar optodes. J Phycol 35:270-279 https://doi.org/10.1046/j.1529-8817.1999.3520270.x
  6. Glud RN, Tengberg A, Kuhl M, Hall POJ, Klimant I, Host G (2001) An in situ instrument for planar $O_2$ optode measurements at benthic interfaces. Limnol Oceanogr 46(8):2073-2080 https://doi.org/10.4319/lo.2001.46.8.2073
  7. Glud RN (2008) Oxygen dynamics of marine sediments. Mar Biol Res 4(4):243-289 https://doi.org/10.1080/17451000801888726
  8. Gundersen JK, Jogensen BB (1990) Microstructure of diffusive boundary layers and the oxygen uptake of the sea floor. Nature 345(6276):604-607 https://doi.org/10.1038/345604a0
  9. Holst G, Kohls O, Klimant I, Konig B, Kuhl M, Richter T (1998) A modular luminescence lifetime imgaing system for mapping oxygen distribution in biological samples. Sensor Actuat B-Chem 51(1):163-170 https://doi.org/10.1016/S0925-4005(98)00232-9
  10. Holst G, Grunwald B (2001) Luminescence lifetime imaging with transparent oxygen optodes. Sensor Actuat B-Chem 74(1):78-90 https://doi.org/10.1016/S0925-4005(00)00715-2
  11. Klimant I, Meyer V, Kühl M (1995) Fiber-optic oxygen microsensors, a new tool in aquatic biology. Limnol Oceanogr 40:1159-1165 https://doi.org/10.4319/lo.1995.40.6.1159
  12. Larsen M, Borisov SM, Grunwald B, Klimant I, Glud RN (2011) A simple and inexpensive high resolution color ratiometric planar optode imaging approach: application to oxygen and pH sensing. Limnol Oceanogr-Meth 9:348-360 https://doi.org/10.4319/lom.2011.9.348
  13. Mayr T, Borisov SM, Abel T, Enko B, Waich K, Mistlberger G, Klimant I (2009) Light harvesting as a simple and versatile way to enhance brightness of luminescent sensors. Anal Chem 81(15):6541-6545 https://doi.org/10.1021/ac900662x
  14. Oguri K, Kitazato H, Glud RN (2006) Platinum octaetylporphyrin based planar optodes combined with an UVLED excitation light source: An ideal tool for highresolution $O_2$ imaging in $O_2$ depleted environment. Mar Chem 100(1):95-97 https://doi.org/10.1016/j.marchem.2005.11.005
  15. Polerecky L, Franke U, Werner B, Grundwald B, De Beer D (2005) High spatial resolution measurement of oxygen consumption rates in permeable sediments. Limnol Oceanogr-Meth 3:75-85 https://doi.org/10.4319/lom.2005.3.75
  16. Schaferling M (2012) The art of fluorescence imaging with chemical sensors. Angew Chem Int Edit Engl 51(15):3532-3554 https://doi.org/10.1002/anie.201105459
  17. Revsbech NP, Jorgensen BB, Blackburn TH (1983) Microelectrode studies of the photosynthesis and $O_2$, $H_2S$ and pH profiles of a microbial mat. Limnol Oceanogr 28(6):1062-1074 https://doi.org/10.4319/lo.1983.28.6.1062
  18. Revsbech NP (1989) An oxygen microsensor with a guard cathode. Limnol Oceanogr 34(2):474-478 https://doi.org/10.4319/lo.1989.34.2.0474
  19. Staal M, Borisov SM, Rickelt LF, Klimant I, Kühl M (2011) Ultrabright planar optodes for luminescence life-time based microscopic imaging of $O_2$ dynamics in biofilms. J Microbiol Meth 85(1):67-74 https://doi.org/10.1016/j.mimet.2011.01.021
  20. Stern O, Volmer M (1919) Uber die Abklingzeit de Fluoreszenze. Phys Z 20:183-188
  21. Volkenborn N, Polerecky L, Hedtkamp SIC, Van Beusekom JEE, De Beer D (2007) Bioturbation and bioirrigation extend the open exchange regions in permeable sediments. Limnol Oceanogr 52(5):1898-1909 https://doi.org/10.4319/lo.2007.52.5.1898
  22. Waich K, Borisov SM, Mayr T, Klimant I (2009) Dual lifetime referenced trace ammonia sensors. Sensor Actuat B-Chem 139(1):132-138 https://doi.org/10.1016/j.snb.2008.10.010
  23. Wenzhofer F, Glud RN (2004) Small-scale spatial and temporal variability in coastal benthic $O_2$ dynamics:Effects of fauna activity. Limnol Oceanogr 49(5):1471-1481 https://doi.org/10.4319/lo.2004.49.5.1471
  24. Zhu QZ, Aller RC, Fan Y (2005) High performance planar pH fluorosensor for two-dimensional pH measurements in marine sediment and water. Environ Sci Technol 39:8906-8911 https://doi.org/10.1021/es051023m
  25. Zhu QZ, Aller RC, Fan Y (2006) A new ratiometric, planar fluorosensor for measuring high resolution, two dimensional pC$O_2$ distribution in marine sediments. Mar Chem 101(1):40-53 https://doi.org/10.1016/j.marchem.2006.01.002
  26. Zhu QZ, Aller RC (2012) Two-dimensional dissolved ferrous iron distributions in marine sediments as revealed by a novel planar optical sensor. Mar Chem 136-137:14-23 https://doi.org/10.1016/j.marchem.2012.04.002

Cited by

  1. Visualization of oxygen distribution on leaf surfaces using VisiSens oxygen planar optode system vol.14, pp.1, 2016, https://doi.org/10.5407/JKSV.2016.14.1.051