References
- C. Berge, Graphs and Hypergraphs, 2nd ed., North-Holland, Amsterdam, 1976.
- L. Boxer, Digitally continuous functions, Pattern Recognition Letters, 15 (1994), 833-839. https://doi.org/10.1016/0167-8655(94)90012-4
- L. Boxer, Digital Products, Wedge; and Covering Spaces, Jour. of Mathematical Imaging and Vision, 25 (2006), 159-171. https://doi.org/10.1007/s10851-006-9698-5
- L. Boxer and I. Karaca, Fundamental groups for digital products, Advances and Applications in Mathematical Sciences, 11(4) (2012), 161-179.
- A. Bretto, Comparability graphs and digital topology, Computer Vision and Imaging Understanding, 82 (2001), 33-41. https://doi.org/10.1006/cviu.2000.0901
- S.E. Han, Computer topology and its applications, Honam Math. Jour. 25(1) (2003), 153-162.
- S.E. Han, Non-product property of the digital fundamental group, Information Sciences, 171(1-3) (2005), 73-91. https://doi.org/10.1016/j.ins.2004.03.018
- S.E. Han, On the simplicial complex stemmed from a digital graph, Honam Mathematical Journal, 27(1) (2005), 115-129.
- S.E. Han, Erratum to /Non-product property of the digital fundamental group", Information Sciences, 176(1) (2006), 215-216. https://doi.org/10.1016/j.ins.2005.03.014
-
S.E. Han, Equivalent (
$k_0,k_1$ )-covering and generalized digital lifting, Information Sciences, 178(2) (2008), 550-561. https://doi.org/10.1016/j.ins.2007.02.004 -
S.E. Han, The k-homotopic thinning and a torus-like digital image in
$Z^n$ , Journal of Mathematical Imaging and Vision, 31(1) (2008), 1-16. https://doi.org/10.1007/s10851-007-0061-2 - S.E. Han, Cartesian product of the universal covering property, Acta Applicandae Mathematicae, 108 (2009), 363-383. https://doi.org/10.1007/s10440-008-9316-1
- S.E. Han, Regural covering space in digital covering theory and its applications, Honam Mathematical Journal, 31(3) (2009), 279-292. https://doi.org/10.5831/HMJ.2009.31.3.279
- S.E. Han, Remark on a generalized universal covering space, Honam Mathematical Jour. 31(3) (2009), 267-278. https://doi.org/10.5831/HMJ.2009.31.3.267
-
S.E. Han, KD-(
$k_0,k_1$ )-homotopy equivalence and its applications, Journal of Korean Mathematical Society, 47(5) (2010), 1031-1054. https://doi.org/10.4134/JKMS.2010.47.5.1031 - S.E. Han, Multiplicative property of the digital fundamental group, Acta Applicandae Mathematicae, 110(2) (2010), 921-944. https://doi.org/10.1007/s10440-009-9486-5
- S.E. Han, Ultra regular covering space and its automorphism group, International Journal of Applied Mathematics & Computer Science, 20(4) (2010), 699-710.
-
S.E. Han and B.G. Park, Digital graph (
$k_0,k_1$ )-isomorphism and its applications, http://atlas-conferences.com/c/a/k/b/36.htm(2003). - S.E. Han, A. Sostak, A compression of digital images derived from a Khalimksy topological structure, Computational and Applied Mathematics, http://dx.doi.org/[DOI], DOI: 10.1007/s40314-013-0034-6, Online first, in press.
- T.Y. Kong, A. Rosenfeld, Topological Algorithms for the Digital Image Processing, Elsevier Science, Amsterdam, 1996.
- A. Rosenfeld, Continuous functions on digital pictures, Pattern Recognition Letters, 4 (1986), 177-184. https://doi.org/10.1016/0167-8655(86)90017-6
Cited by
- REMARKS ON HOMOTOPIES ASSOCIATED WITH KHALIMSKY TOPOLOGY vol.37, pp.4, 2015, https://doi.org/10.5831/HMJ.2015.37.4.577
- COMPARISON AMONG SEVERAL ADJACENCY PROPERTIES FOR A DIGITAL PRODUCT vol.37, pp.1, 2015, https://doi.org/10.5831/HMJ.2015.37.1.135
- Generalizations of continuity of maps and homeomorphisms for studying 2D digital topological spaces and their applications vol.196, 2015, https://doi.org/10.1016/j.topol.2015.05.024
- AN EQUIVALENT PROPERTY OF A NORMAL ADJACENCY OF A DIGITAL PRODUCT vol.36, pp.1, 2014, https://doi.org/10.5831/HMJ.2014.36.1.199
- UTILITY OF DIGITAL COVERING THEORY vol.36, pp.3, 2014, https://doi.org/10.5831/HMJ.2014.36.3.695