DOI QR코드

DOI QR Code

Preparation and Characterization of Fibers Based on Poly(p-Phenylene Benzobisoxazole)s Containing Trifunctional Moiety as Chain Extender

사슬연장제로서 3관능성 공단량체가 도입된 폴리(파라-페닐렌 벤조비스옥사졸) 섬유의 제조와 특성분석

  • Jeong, Young Gyu (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Lee, Jang Hyuk (Department of Materials Design Engineering, Kumoh National Institute of Technology) ;
  • Min, Byung Gil (Department of Materials Design Engineering, Kumoh National Institute of Technology) ;
  • Yoon, Kwan Han (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
  • 정영규 (충남대학교 유기소재섬유시스템공학과) ;
  • 이장혁 (금오공과대학교 소재디자인공학과) ;
  • 민병길 (금오공과대학교 소재디자인공학과) ;
  • 윤관한 (금오공과대학교 고분자공학과)
  • Received : 2013.04.29
  • Accepted : 2013.06.09
  • Published : 2013.06.30

Abstract

A series of poly(p-phenylene benzobisoxazole) (PBO)-based copolymers containing a trifunctional moiety in their backbones were prepared via polymerization of 4,6-diaminoresorcinol dihydrochloride (DAR) with terephthaloyl chloride (TPC) and 1,3,5-benzenetricarbonyl trichloride (BTC) in poly(phosphoric acid) (PPA). The concentration of trifunctional BTC comonomer was controlled during polymerization to be 0.0-2.0 mol% of difunctional TPC concentration. The inherent viscosity and associated average molecular weight of PBO copolymers with different BTC contents were evaluated by using solution viscometry and the Mark-Houwink equation, respectively. In addition, single fibers based on neat PBO and its copolymers were prepared by in situ dry-jet wet spinning of anisotropic liquid crystalline polymerization products in PPA dopes. The molecular structure and morphology of the as-spun fibers were determined. The effects of BTC content on the thermal stability and tensile mechanical properties of the as-spun fibers were also investigated.

Keywords

References

  1. J. F. Wolfe in "Polybenzothiazole and Polybenzoxazoles. In Encylopedia of Polymer Science and Technology", 2nd Ed., (H. F. Mark and J. I. Kroschmitz Eds.), Wiley, New York, 1988, Vol. 11.
  2. X.-D. Hu, S. E. Jenkins, B. G. Min, M. B. Polk, and S. Kumar, "Rigid-rod Polymers: Synthesis, Processing, Simulation, Structure, and Properties", Macromol Mater Eng, 2003, 288, 823-843. https://doi.org/10.1002/mame.200300013
  3. E. W. Choe and S. N. Kim, "Synthesis, Spinning, and Fiber Mechanical Properties of Poly(p-phenylenebenzobisoxazole)", Macromolecules, 1981, 14, 920-924. https://doi.org/10.1021/ma50005a006
  4. J. F. Wolfe and F. E. Arnold, "Ridig-rod Polymers. 1. Synthesis and Thermal Properties of Para-aromatic Polymers with 2.6-benzobisoxazole Units in the Main Chain", Macromolecules, 1981, 14, 909-915. https://doi.org/10.1021/ma50005a004
  5. D. B. Cotts and G. C. Berry, "Polymerization Kinetics of Rigid Rodlike Molecules: Polycondensation of Poly ([benzo(1,2-d:5,4-d')bisoxazole-2,6-diyl]-1,4-phenyle)", Macromolecules, 1981, 14, 930-934. https://doi.org/10.1021/ma50005a008
  6. Y.-H. So, J. P. Heeschen, B. Bell, P. Bonk, M. Briggs, and R. DeCaire, “Study of the Mechanism for Poly(p-phenylene) Benzoxazole Polymerizations-A Remarkable Reaction Pathway to Make Rigid-rod Polymers”, Macromolecules, 1998, 31, 5229-5239. https://doi.org/10.1021/ma980467i
  7. S. J. Krause, T. B. Haddock, D. L. Vezie, P. G. Lenhert, W.-F. Hwang, G. E. Price, T. E. Helminiak, J. F. O'Brien, and W. W. Adams, "Morphology and Properties of Rigidrod Poly(p-phenylene benzobisoxazole) (PBO) and Stiffchain Poly(2,5(6)-benzoxazole) (ABPBO) Fibres", Polymer, 1988, 29, 1354-1364. https://doi.org/10.1016/0032-3861(88)90297-2
  8. R. J. Young, R. J. Day, and M. Zakikhani, “The Structure and Deformation Behaviour of Poly(p-phenylene benzobisoxazole) Fibres”, J Mater Sci, 1990, 25, 127-136. https://doi.org/10.1007/BF00544197
  9. D. C. Martin and E. L. Thomas, “Ultrastructure of Poly(pphenylenebenzobisoxazole) Fibers”, Macromolecules, 1991, 24, 2450-2460. https://doi.org/10.1021/ma00009a049
  10. M. E. Hunsaker, G. E. Price, and S. J. Bai, "Processing, Structure and Mechanics of Fibres of Heteroaromatic Oxazole Polymers", Polymer, 1992, 33, 2128-2135. https://doi.org/10.1016/0032-3861(92)90879-2
  11. T. Kitagawa, H. Murase, and K. Yabuki, “Morphological Study on Poly-p-phenylenebenzobisoxazole(PBO) Fiber”, J Polym Sci Part B: Polym Phys, 1998, 36, 39-48.
  12. K. Tashiro, J. Yoshino, T. Kitagawa, H. Murase, and K. Yabuki, “Crystal Structure and Packing Disorder of Poly(pphenylenebenzobisoxazole): Structural Analysis by an Organized Combination”, Macromolecules, 1998, 31, 5430-5440. https://doi.org/10.1021/ma980113r
  13. T. Kitagawa, K. Yabuki, and R. J. Young, "An Investigation into the Relationship between Processing, Structure and Properties for High-modulus PBO Fibres. Part 1. Raman Band Shifts and Broadening in Tension and Compression", Polymer, 2001, 42, 2101-2112. https://doi.org/10.1016/S0032-3861(00)00571-1
  14. S. Bourbigot, X. Flambard, and B. Revel, “Characterisation of Poly(p-phenylenebenzobisoxazole) Fibres by Solid State NMR”, Eur Polym J, 2002, 38, 1645-1651. https://doi.org/10.1016/S0014-3057(02)00049-6
  15. S. F. Ran, C. Burger, D. F. Fang, X. H. Zong, S. Cruz, B. T. T. Chu, B. S. Hsiao, R. A. Bubeck, K. Yabuki, Y. Teramoto, D. C. Martin, M. A. Johnson, and P. M. Cunniff, “In-situ Synchrotron WAXD/SAXS Studies of Structural Development during PBO/PPA Solution Spinning”, Macromolecules, 2002, 35, 433-439. https://doi.org/10.1021/ma010249g
  16. R. J. Davies, S. J. Eichhorn, C. Riekel, and R. J. Young, “Crystal Lattice Deformation in Single Poly(p-phenylene benzobisoxazole) Fibres”, Polymer, 2004, 45, 7693-7704. https://doi.org/10.1016/j.polymer.2004.08.030
  17. S. A. Fawaz, A. N. Palazotto, and C. S. Wang, “Axial Tensile and Compressive Properties of High-performance Polymeric Fibres”, Polymer, 1992, 33, 100-105. https://doi.org/10.1016/0032-3861(92)90566-F
  18. S. F. Palazotto, C. T. Tsai, and S. Kumar, “Compressive Properties of High-performance Polymeric Fibers”, Compos Sci Technol, 1993, 49, 291-297. https://doi.org/10.1016/0266-3538(93)90110-3
  19. P. Davises, A. Bunsell, and E. Chailleux, “Tensile Fatigue Behaviour of PBO Fibres”, J Mater Sci, 2010, 45, 6395-6400. https://doi.org/10.1007/s10853-010-4721-z
  20. R. C. Evers, F. E. Arnold, and T. E. Helminiak, "Articulated All-para Polymers with 2,6-benzobisoxazole, 2,6-benzobisthiazole, and 2,6-benzobisimidazole Units in the Backbone", Macromolecules, 1981, 14, 925-930. https://doi.org/10.1021/ma50005a007
  21. S. Wang, P. Wu, and Z. Han, "Random Conjugated Polybenzazole Copolymers: Synthesis, Characterization, and Exciton Confinement Effects in Photophysical Properties", J Mater Sci, 2004, 39, 2717-2726. https://doi.org/10.1023/B:JMSC.0000021446.98019.d7
  22. S. Wang, P. Guo, P. Wu, and Z. Han, “Supramolecular Regulation of Photophysical Properties and Electron Paramagnetic Resonance Studies of Novel Rod-coil Ordered Copolymers Based on Poly(p-phenylene benzobisoxazole)”, Macromolecules, 2004, 37, 3815-3822. https://doi.org/10.1021/ma0498316
  23. T. Zhang, J. Jin, S. Yang, G. Li, and J. Jiang, “Effect of Hydrogen Bonding on the Compressive Strength of Dihydroxy Poly(p-phenylenebenzobisoxazole) Fibers”, ACS Appl Mater Interf, 2009, 1, 2023-2125.
  24. C. P. Wong, H. Ohnuma, and G. C. Berry, “Properties of Some Rodlike Polymers in Solution”, J Polym Sci: Polym Symp, 1978, 65, 173-192.
  25. Z. Hu, Y. Huang, F. Wang, Y. Yao, S. Sun, Y. Li, Z. Jiang, H. Xu, and P. Tang, “Synthesis of Novel Single-walled Carbon Nanotubes/poly(p-phenylene benzobisoxazole) Nanocomposite”, Polym Bull, 2011, 67, 1731-1739. https://doi.org/10.1007/s00289-011-0476-1

Cited by

  1. Significant enhancement in compressive strength of poly(p-phenylenebenzobisoxazole) fibers by incorporation of carbon nanofibers vol.17, pp.8, 2016, https://doi.org/10.1007/s12221-016-6458-z
  2. Preparation, structure and properties of poly(p-phenylene benzobisoxazole) composite fibers reinforced with graphene vol.22, pp.3, 2014, https://doi.org/10.1007/s13233-014-2043-8