DOI QR코드

DOI QR Code

Effect of the Ni Catalyst Size and Shape on the Variation of the Geometries for the As-grown Carbon Coils

  • Jang, Chang-Young (Department of Engineering in Energy & Applied Chemistry, Silla University) ;
  • Kim, Sung-Hoon (Department of Engineering in Energy & Applied Chemistry, Silla University)
  • Received : 2013.08.17
  • Accepted : 2013.08.28
  • Published : 2013.08.31

Abstract

Carbon nanofilaments (CNFs) could be synthesized using $C_2H_2/H_2$ as source gases and $SF_6$ as an incorporated additive gas under thermal chemical vapor deposition system. Ni powders were used as the catalyst for the formation of the CNFs. During the initial deposition stage, the initiation of the CNFs on the Ni catalyst was investigated. The geometries of the as-grown CNFs on Ni catalyst were strongly dependent on the size and/or the shape of Ni catalyst. Small size catalyst (<150 nm in diameter) gives rise to the unidirectional growth of the CNFs. On the other hand, large size catalyst (150~500 nm), the bidirectional growth of the CNFs could be observed. Particularly, the well faceted parallelogram-shaped Ni catalyst could give rise to the bidirectional growth of the CNFs having the symmetrically opposite direction. Eventually, these bidirectional growths of CNFs were understood to form the well-developed carbon microcoils (CMCs). Based on these results, the optimal shape and the size of the Ni catalyst to form the CMCs were discussed.

Keywords

References

  1. J. Prasek, J. Drbohlavova, J. Chomoucka, J. Hubalek, O. Jasek, V. Adam, R. Kizek, J. Mater. Chem., 21 (2011) 15872. https://doi.org/10.1039/c1jm12254a
  2. G. Che, B. B. Lakshmi, C. R. Martin, E. R. Fisher, Chem. Mater., 10 (1998) 260. https://doi.org/10.1021/cm970412f
  3. Y.-C. Jeon, S. Park, S.-H. Kim, J. Nanomater., 2013, (2013) Article ID 325827.
  4. W. R. Davis, R. J. Slawson, G. R. Rigby, Nature, 171 (1953) 756.
  5. N. M. Rodriguez, J. Mater. Res., 8 (1993) 3233. https://doi.org/10.1557/JMR.1993.3233
  6. M. Zang, Y. Nakayama, L. J. Pan, Jpn. J. Appl. Phys., 39 (2000) L1242. https://doi.org/10.1143/JJAP.39.L1242
  7. R. Kanada, L. J. Pan, S. Akita, N. Okazaki, K. Hirahara, Y. Nakayama, Jpn. J. Appl. Phys., 47 (2008) 1949. https://doi.org/10.1143/JJAP.47.1949
  8. W. Wang, K. Yang, J. Gaillard, P. R. Bandaru, A. M. Rao, Adv. Mater., 20 (2008) 179. https://doi.org/10.1002/adma.200701143
  9. W. In-Hwang, H. Yanagida, S. Motojima, Mater. Lett., 43 (2000) 11. https://doi.org/10.1016/S0167-577X(99)00220-7
  10. S. Motojima, S. Asakura, T. Kasemura, S. Takeuchi, H. Iwanaga, Carbon, 34 (1996) 289. https://doi.org/10.1016/0008-6223(95)00169-7
  11. N. Tang, J. Wen, Y. Zhang, F. Liu, K. Lin, Y. Du, ACS Nano, 4 (2010) 241. https://doi.org/10.1021/nn901425r
  12. Q. Zhang, L. Yu, Z. Cui, Mater. Res. Bull., 43 (2008) 735. https://doi.org/10.1016/j.materresbull.2007.03.022
  13. S. Hokushin, L. Pan, Y. Nakayama, Jpn. J. Appl. Phys., 46 (2007) 5383. https://doi.org/10.1143/JJAP.46.5383
  14. N. M. Rodriguez, M. S. Kim, F. Fortin, I. Mochida, R. T. K. Baker, Appl. Catal. A: General, 148 (1997) 265. https://doi.org/10.1016/S0926-860X(96)00142-1
  15. S. Motojima, Y. Itoh, S. Asakura, H. Iwanaga, J. Mater. Sci., 30 (1995) 5049. https://doi.org/10.1007/BF00356048
  16. S. Yang, C. Chen, S. Motojima, Diamond Relat. Mater., 13 (2004) 2152. https://doi.org/10.1016/j.diamond.2004.06.014
  17. S. Amelinckx, X. B. Zhang, D. Bernaerts, X. F. Zhang, V. Ivanov, J. B. Nagy, Science, 265 (1994) 635. https://doi.org/10.1126/science.265.5172.635