DOI QR코드

DOI QR Code

Growth of Nanocrystalline Diamond on W and Ti Films

W 및 Ti 박막 위에서 나노결정질 다이아몬드의 성장 거동

  • Park, Dong-Bae (Department of Advanced Materials Engineering, Korea Polytechnic University) ;
  • Myung, Jae-Woo (Department of Advanced Materials Engineering, Korea Polytechnic University) ;
  • Na, Bong-Kwon (Department of Advanced Materials Engineering, Korea Polytechnic University) ;
  • Kang, Chan Hyoung (Department of Advanced Materials Engineering, Korea Polytechnic University)
  • 박동배 (한국산업기술대학교 신소재공학과) ;
  • 명재우 (한국산업기술대학교 신소재공학과) ;
  • 나봉권 (한국산업기술대학교 신소재공학과) ;
  • 강찬형 (한국산업기술대학교 신소재공학과)
  • Received : 2013.08.14
  • Accepted : 2013.08.28
  • Published : 2013.08.31

Abstract

The growth behavior of nanocrystalline diamond (NCD) film has been studied for three different substrates, i.e. bare Si wafer, 1 ${\mu}m$ thick W and Ti films deposited on Si wafer by DC sputter. The surface roughness values of the substrates measured by AFM were Si < W < Ti. After ultrasonic seeding treatment using nanometer sized diamond powder, surface roughness remained as Si < W < Ti. The contact angles of the substrates were Si ($56^{\circ}$) > W ($31^{\circ}$) > Ti ($0^{\circ}$). During deposition in the microwave plasma CVD system, NCD particles were formed and evolved to film. For the first 0.5h, the values of NCD particle density were measured as Si < W < Ti. Since the energy barrier for heterogeneous nucleation is proportional to the contact angle of the substrate, the initial nucleus or particle densities are believed to be Si < W < Ti. Meanwhile, the NCD growth rate up to 2 h was W > Si > Ti. In the case of W substrate, NCD particles were coalesced and evolved to the film in the short time of 0.5 h, which could be attributed to the fact that the diffusion of carbon species on W substrate was fast. The slower diffusion of carbon on Si substrate is believed to be the reason for slower film growth than on W substrate. The surface of Ti substrate was observed as a vertically aligned needle shape. The NCD particle formed on the top of a Ti needle should be coalesced with the particle on the nearby needle by carbon diffusion. In this case, the diffusion length is longer than that of Si or W substrate which shows a relatively flat surface. This results in a slow growth rate of NCD on Ti substrate. As deposition time is prolonged, NCD particles grow with carbon species attached from the plasma and coalesce with nearby particles, leaving many voids in NCD/Ti interface. The low adhesion of NCD films on Ti substrate is related to the void structure of NCD/Ti interface.

Keywords

References

  1. H. Guo, Y. Qi, X. Li, J. Appl. Phys., 107 (2010) 033722. https://doi.org/10.1063/1.3277013
  2. V. G. Ralchenko, A. A. Smolin, V. G. Pereverzev, E. D. Obraztsova, K. G. Korotoushenko, V. I. Konov, Y. V. Lakhotkin, E. N. Loubnin, Diamond Relat. Mater., 4 (1995) 754. https://doi.org/10.1016/0925-9635(94)05299-9
  3. Q. H. Fan, A. Fernandes, J. Gracio, Diamond Relat. Mater., 7 (1998) 603. https://doi.org/10.1016/S0925-9635(97)00287-2
  4. N. N. Naguib, J. W. Elam, J. Birrell, J. Wang, D. S. Grierson, B. Kabius, J. M. Hiller, A. V. Sumant, R. W. Carpick, O. Auciello, J. A. Carlisle, Chem. Phys. Lett., 430 (2006) 345. https://doi.org/10.1016/j.cplett.2006.08.137
  5. R. Polini, Thin Solid Films, 515 (2006) 4. https://doi.org/10.1016/j.tsf.2005.12.042
  6. L.-J. Chen, C.-C. Liu, N.-H. Tai, C.-Y. Lee, W. Fang, I.-N. Lin, J. Phys. Chem. C, 112 (2008) 3759. https://doi.org/10.1021/jp709777g
  7. L.-J. Chen, N.-H. Tai, C.-Y. Lee, I.-N. Lin, J. Appl. Phys., 101 (2007) 064308. https://doi.org/10.1063/1.2434008
  8. N. A. Braga, C. A. A. Cairo, E. C. Almeida, M. R. Baldan, N. G. Ferreiraa, Diamond Relat. Mater., 17 (2008) 1891. https://doi.org/10.1016/j.diamond.2008.04.002
  9. S. J. Askari, G. C. Chen, F. X. Lu, Mater. Res. Bull., 43 (2008) 1086. https://doi.org/10.1016/j.materresbull.2007.06.010
  10. X. Xiao, B. W. Sheldon, E. Konca, L. C. Lev, M. J. Lukitsch, Diamond Relat. Mater., 18 (2009) 1114. https://doi.org/10.1016/j.diamond.2009.02.012
  11. R. Polini, M. Barletta, G. Cristofallini, Thin Solid Films, 519 (2010) 1629. https://doi.org/10.1016/j.tsf.2010.07.128
  12. Y. Tang, Y. S. Li, Q. Yang, A. Hirose, Diamond Relat. Mater., 19 (2010) 496. https://doi.org/10.1016/j.diamond.2009.12.019
  13. Y. C. Chu, G. Jiang, C. Chang, J.-M. Ting, H.-L. Lee, Y. Tzeng, Proc. 11th IEEE Intern. Conf. on Nanotechnology, Portland, Oregon, USA, (2011) 1367.
  14. B.-K. Na, C. H. Kang, J. Kor. Inst. Surf. Eng., 46 (2013) 68. https://doi.org/10.5695/JKISE.2013.46.2.068
  15. D. Y. Jung, C. H. Kang, J. Kor. Inst. Surf. Eng,. 44 (2011) 131. https://doi.org/10.5695/JKISE.2011.44.4.131
  16. I.-S. Kim, C. H. Kang, J. Kor. Inst. Surf. Eng., 46 (2013) 29. https://doi.org/10.5695/JKISE.2013.46.1.029
  17. J. P. Schaffer, A. Saxena, S. D. Antolovich, T. H. Sanders Jr., S. B. Werner, The Science and Design of Engineering Materials, 2nd ed., McGraw-Hill Book Co., Singapore, (1999) 297.
  18. R. N. Wenzel, Ind. Eng. Chem., 28 (1936) 988. https://doi.org/10.1021/ie50320a024
  19. T.-S. Wong, T. Sun, L. Feng, J. Aizenberg, MRS Bull., 38 (2013) 366. https://doi.org/10.1557/mrs.2013.99

Cited by

  1. Heat Spreading Properties of CVD Diamond Coated Al Heat Sink vol.48, pp.6, 2015, https://doi.org/10.5695/JKISE.2015.48.6.297
  2. Nanocrystalline Diamond Coating on Steel with SiC Interlayer vol.47, pp.2, 2014, https://doi.org/10.5695/JKISE.2014.47.2.075