초록
영상처리에서 quincunx 격자를 사용하는 기법은 대표적인 비분리의 표본화 기법이다. 이 방법은 기존의 이차원 분리가능처리 기법보다 더 많은 다양한 방향성을 가지며 대역적 특성도 우수하다. 고밀도 이산 웨이브렛 변환은 N개의 입력 신호를 M개의 변환 계수들로 확장하는 변환이다(M>N). 이차원 처리에서 이 고밀도 이산 웨이브렛 변환의 이동불변의 장점은 표준 이산 웨이브렛 변환보다 더 우수하다. 그래서 이 변환은 다른 많은 웨이브렛보다 더 유용하게 사용될 수 있지만 표본화율이 높은 단점도 존재한다. 본 논문에서는 quincunx 표본화를 사용하는 고밀도 이산 웨이브렛 변환을 제안하였다. 이 방법은 고밀도 이산 웨이브렛과 비분리 처리의 특징을 유지하고 조합하는 방법이다. 제안된 방법은 영상처리 응용분야에서 좋은 성능을 갖는다.
The quincunx lattice is a non-separable sampling method in image processing. It treats the different directions more homogeneously and good frequency property than the separable two dimensional schemes. The high density discrete wavelet transformation is one that expands an N point signal to M transform coefficients with M > N. In two dimensions, this transform outperforms the standard discrete wavelet transformation in terms of shift-invariant. Although the transformation utilizes more wavelets, sampling rates are high costs. This paper proposed the high density discrete wavelet transform using quincunx sampling, which is a discrete wavelet transformation that combines the high density discrete transformation and non-separable processing method, each of which has its own characteristics and advantages. Proposed wavelet transformation can service good performance in image processing fields.