초록
동영상에서 추출한 변수값을 은닉 마르코프 모델(Hidden Markov Model; HMM)에 적용한 새로운 낙상 인식 알고리듬을 제안한다. 개인간 낙상 양식의 차이나 유사 낙상을 실제 낙상과 구분하기 위한 기계 학습 방법으로 HMM알고리듬을 사용하였다. 비디오의 낙상 특징 변수를 얻기 위해 동영상의 광류를 구한 후 이를 주성분 분석 방식에 적용하여 움직임을 정량화하였다. 주성분 분석으로 얻어진 전체 움직임 벡터의 각도, 장단축의 비, 속도등의 조합으로 새로운 여러 종류의 낙상 특징 변수를 정의한 후 이를 HMM에 적용하여 결과를 비교, 분석하였다. 이들 변수들 중에 각도에 의해 얻어진 변수가 가장 좋은 결과를 보여 본 실험에서 91.5%의 민감도(성공 감지율)와 88.01% 의 특이도(실패 감지율)를 나타내었다.
A newly developed fall detection algorithm using the HMM (Hidden Markov Model) extracted from the video is introduced. To distinguish between the fall from personal difference fall pattern or the normal activities of daily living (ADL), HMM machine learning algorithm is used. For getting fall feature vector of video, the motion vector from the optical flow is applied to the PCA (Principal Component Analysis). The combination of the angle, ratio of long-short axis, velocity from results of PCA make the new fall feature parameters. These parameters were applied to the HMM and the results were compared and analyzed. Among the newly proposed various kinds of fall parameters, the angle of movement showed the best results. The results show that this parameter can distinguish various types of fall from ADLs with 91.5% sensitivity and 88.01% specificity.