초록
의료영상분할은 다양한 의료영상처리를 수행하기에 앞서 먼저 수행되어야 하는 영상처리 기술이다. 그래서 빠르고 정확한 의료영상분할이 요구되고 있으며 다양한 의료영상분할 방법이 연구되고 있다. 의료영상에는 특성이 유사한 다양한 장기가 존재하기 때문에 분할영역의 정확한 판단이 필요하다. 그러나 의료영상은 장기의 일부가 작게 촬영되는 경우가 발생된다. 이 경우에는 분할영역을 판단하기 위한 정보가 부족하게 되며 그 결과 분할과정에서 분할영역이 제거된다. 본 논문에서는 볼륨 데이터와 선형 방정식을 이용하여 작은 영역에서의 분할결과를 개선하였다. 제안한 방법의 성능을 확인하기 위하여 흉부 CT 영상의 폐 분할을 수행하였다. 실험 결과, 의료영상의 분할 정확도는 0.978에서 0.981로 표준편차는 0.281에서 0.187로 개선되는 것을 확인하였다.
Medical image segmentation is an image processing technology prior to performing various medical image processing. Therefore, a variety of methods have been researched for fast and accurate medical image segmentation. Accurate judgment of segmentation region is needed to segment the interest region in which patient requested in medical image that various organs exist. However, an case that scanned a part of organs is small occurs. In this case, information to determine the segmentation region is lack. consequently, a removal of segmentation region occurs during the segmentation process. In this paper, we improved segmentation results in a small region using volume data and linear equation. In order to verify the performance of the proposed method, we segmented the lung region of chest CT images. As a result of experiments, we confirmed that image segmentation accuracy rose from 0.978 to 0.981 and standard deviation also improved from 0.281 to 0.187.