DOI QR코드

DOI QR Code

Effects of Chitosan on Body Weight Gain, Growth Hormone and Intestinal Morphology in Weaned Pigs

  • Xu, Yuanqing (College of Animal Science, Inner Mongolia Agricultural University) ;
  • Shi, Binlin (College of Animal Science, Inner Mongolia Agricultural University) ;
  • Yan, Sumei (College of Animal Science, Inner Mongolia Agricultural University) ;
  • Li, Tiyu (College of Animal Science, Inner Mongolia Agricultural University) ;
  • Guo, Yiwei (College of Animal Science, Inner Mongolia Agricultural University) ;
  • Li, Junliang (College of Animal Science, Inner Mongolia Agricultural University)
  • 투고 : 2013.02.04
  • 심사 : 2013.05.09
  • 발행 : 2013.10.01

초록

The study was conducted to determine the effects of chitosan on the concentrations of GH and IGF-I in serum and small intestinal morphological structure of piglets, in order to evaluate the regulating action of chitosan on weaned pig growth through endocrine and intestinal morphological approaches. A total of 180 weaned pigs (35 d of age; $11.56{\pm}1.61kg$ of body weight) were selected and assigned randomly to 5 dietary treatments, including 1 basal diet (control) and 4 diets with chitosan supplementation (100, 500, 1,000 and 2,000 mg/kg, respectively). Each treatment contained six replicate pens with six pigs per pen. The experiment lasted for 28 d. The results showed that the average body weight gain (BWG) of pigs was improved quadratically by dietary chitosan during the former 14 d and the later 14 d after weaned (p<0.05). Furthermore, dietary supplementation of chitosan tended to quadratically increase the concentration of serum GH on d 14 (p = 0.082) and 28 (p = 0.087). Diets supplemented with increasing levels of chitosan increased quadratically the villus height of jejunum and ileum on d 14 (p = 0.089, p<0.01) and 28 (p = 0.074, p<0.01), meanwhile, chitosan increased quadratically the ratio of villus height to crypt depth in duodenum, jejunum and ileum on d 14 (p<0.05, p = 0.055, p<0.01) and 28 (p<0.01, p<0.01, p<0.01), however, it decreased quadratically crypt depth in ileum on d 14 (p<0.05) and that in duodenum, jejunum and ileum on d 28 (p<0.01, p<0.05, p<0.05). In conclusion, these results indicated that chitosan could quadratically improve growth in weaned pigs, and the underlying mechanism may due to the increase of the serum GH concentration and improvement of the small intestines morphological structure.

키워드

참고문헌

  1. Benhabiles, M. S., R. Salah, H. Lounici, N. Drouiche, M. F. A. Goosen, and N. Mameri. 2012. Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocoll. 29:48-56. https://doi.org/10.1016/j.foodhyd.2012.02.013
  2. Crini, G. 2005. Recent developments in polysaccharide-based materials used as absorbents in wastewater treatment. Prog. Polym. Sci. 30:38-70. https://doi.org/10.1016/j.progpolymsci.2004.11.002
  3. Dai, T., G. P. Tegos, M. Burkatovskaya, A. P. Castano, and M. R. Hamblin. 2009. Chitosan acetate bandage as a topical antimicrobial dressing for infected burns. Antimicrob. Agents Chemother. 53:393-400. https://doi.org/10.1128/AAC.00760-08
  4. Goiri, I., L. M. Oregui, and A. Garcia-Rodriguez. 2010. Use of chitosans to modulate ruminal fermentation of a 50:50 forage-to-concentrate diet in sheep. J. Anim. Sci. 88:749-755. https://doi.org/10.2527/jas.2009-2377
  5. Hall, T. R., S. Harvey, and C. G. Scanes. 1986. Control of growth hormone secretion in the vertebrates: a comparative survey. Comp. Biochem. Physiol. 84A:231-253.
  6. Hampson, D. J. 1986. Alterations in piglet small intestinal structure at weaning. Res. Vet. Sci. 40:32-40.
  7. Han, X. Y., W. L. Du, Q. C. Huang, Z. R. Xu, and Y. Z. Wang. 2012. Changes in small intestinal morphology and digestive enzyme activity with oral administration of copper-loaded chitosan nanoparticles in rats. Biol. Trace Elem. Res. 145:355-360. https://doi.org/10.1007/s12011-011-9191-x
  8. Hou, Y. Q., Y. L. Liu, J. Hu, and W. H. Shen. 2006. Effects of lactitol and tributyrin on growth performance, small intestinal morphology and enzyme activity in weaned pigs. Asian-Aust. J. Anim. Sci. 19:1470-1477. https://doi.org/10.5713/ajas.2006.1470
  9. Huang, R. L., Y. L. Yin, G. Y. Wu, Y. G. Zhang, T. J. Li, L. L. Li, M. X. Li, Z. R. Tang, J. Zhang, B. Wang, J. H. He, and X. Z. Nie. 2005. Effect of dietary oligochitosan supplementation on ileal digestibility of nutrients and performance in broilers. Poult. Sci. 84:1383-1388. https://doi.org/10.1093/ps/84.9.1383
  10. Huang, R. L., Y. L. Yin, M. X. Li, G. Y. Wu, T. J. Li, L. L. Li, C. B. Yang, J. Zhang, B. Wang, Z. Y. Deng, Y. G. Zhang, Z. R. Tang, P. Kang, and Y. M. Guo. 2007. Dietary oligochitosan supplementation enhances immune status of broilers. J. Sci. Food Agric. 87:153-159. https://doi.org/10.1002/jsfa.2694
  11. Hu, C. H., L. Y. Gu, Z. S. Luan, J. Song, and K. Zhu. 2012. Effects of montmorillonite-zinc oxide hybrid on performance, diarrhea, intestinal permeability and morphology of weanling pigs. Anim. Feed Sci. Technol. 177:108-115. https://doi.org/10.1016/j.anifeedsci.2012.07.028
  12. Khambualai, O., K. Yamauchi, S. Tangtaweewipat, and B. Cheva-Isarakul. 2009. Growth performance and intestinal histology in broiler chickens fed with dietary chitosan. Br. Poult. Sci. 50: 592-597. https://doi.org/10.1080/00071660903247182
  13. Kim, J. C., C. F. Hansen, B. P. Mullana, and J. R. Pluske. 2012. Nutrition and pathology of weaner pigs: nutritional strategies to support barrier function in the gastrointestinal tract. Anim. Feed Sci. Technol. 173:3-16. https://doi.org/10.1016/j.anifeedsci.2011.12.022
  14. Knaul, J. Z., S. M. Hudson, and K. A. M. Creber. 1999. Crosslinking of chitosan fibers with dialdehydes: Proposal of a new reaction mechanism. J. Polym. Sci. Part B, Polym. Phys. 37:1079-1094. https://doi.org/10.1002/(SICI)1099-0488(19990601)37:11<1079::AID-POLB4>3.0.CO;2-O
  15. Koide, S. S. 1998. Chitin-chitosan: properties, benefits and risks. Nutr. Res. 18:1091-1101. https://doi.org/10.1016/S0271-5317(98)00091-8
  16. Li, H. Y., S. M. Yan, B. L. Shi, and X. Y. Guo. 2009. Effect of chitosan on nitric oxide content and inducible nitric oxide synthase activity in serum and expression of inducible nitric oxide synthase mRNA in small intestine of broiler chickens. Asian-Aust. J. Anim. Sci. 22:1048-1053. https://doi.org/10.5713/ajas.2009.80708
  17. Liao, F. H., M. J. Shieh, N. C. Chang, and Y. W. Chien. 2007. Chitosan supplementation lowers serum lipids and maintains normal calcium, magnesium, and iron status in hyperlipidemic patients. Nutr. Res. 27:146-151. https://doi.org/10.1016/j.nutres.2007.01.009
  18. Limam, Z., S. Selmi, S. Sadok, and A. El-abed. 2011. Extraction and characterization of chitin and chitosan from crustacean by-products: biological and physicochemical properties. Afr. J. Biotechnol. 10:640-647.
  19. Liu, G. M., Y. Wei, Z. S. Wang, D. Wu, and A. G. Zhou. 2008. Effects of dietary supplementation with cysteamine on growth hormone receptor and insulin-like growth factor system in finishing pigs. J. Agric. Food Chem. 56:5422-5427. https://doi.org/10.1021/jf800575p
  20. Liu, P., X. S. Piao, S. W. Kim, L. Wang, Y. B. Shen, H. S. Lee, and S. Y. Li. 2008. Effects of chito-oligosaccharide supplementation on the growth performance, nutrient digestibility, intestinal morphology, and fecal shedding of Escherichia coli and Lactobacillus in weaning pigs. J. Anim. Sci. 86:2609-2618. https://doi.org/10.2527/jas.2007-0668
  21. Moon, J. S., H. K. Kim, H. C. Koo, Y. S. Joo, H. M. Nam, Y. H. Park, and M. I. Kang. 2007. The antibacterial and immunostimulative effect of chitosan-oligosaccharides against infection by staphylococcus aureus isolated from bovine mastitis. Appl. Microbiol. Biotechnol. 75:989- 998. https://doi.org/10.1007/s00253-007-0898-8
  22. Montagne, L., J. R. Pluske, and D. J. Hampson. 2003. A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Anim. Feed Sci. Technol. 108:95-117. https://doi.org/10.1016/S0377-8401(03)00163-9
  23. Nabuurs, M. J. A., A. Hoogendoorn, E. J. Van Der Molen, and A. L. M. Van Osta. 1993. Villus height and crypt depth in weaned and unweaned pigs, reared under various circumstances in the Netherlands. Res. Vet. Sci. 55:78-84. https://doi.org/10.1016/0034-5288(93)90038-H
  24. NRC. 1998. Nutrient requirements of swine. 10th ed. National Academic Press, Washington, DC.
  25. Peace, R. M., J. Campbell, J. Polo, J. Crenshaw, L. Russell, and A. J. Moeser. 2011. Spray-dried porcine plasma influences intestinal barrier function, inflammation, and diarrhea in weaned pigs. J. Nutr. 141:1312-1317. https://doi.org/10.3945/jn.110.136796
  26. Pell, J. M., and P. C. Bates. 1990. The nutritional regulation of growth hormone action. Nutr. Res. Rev. 3:163-192. https://doi.org/10.1079/NRR19900011
  27. Pluske, J. R., I. H. Williams, and F. X. Aherne. 1996a. Maintenance of villus height and crypt depth in piglets by providing continuous nutrition after weaning. Anim. Sci. 62: 131-144. https://doi.org/10.1017/S1357729800014417
  28. Pluske, J. R., I. H. Williams, and F. X. Aherne. 1996b. Villus height and crypt depth in piglets in response to increases in the intake of cows' milk after weaning. Anim. Sci. 62:145-158. https://doi.org/10.1017/S1357729800014429
  29. Pusateri, A. E., J. B. Holcomb, B. S. Kheirabadi, H. B. Alam, C. E.Wade, and K. L. Ryan. 2006. Making sense of the preclinical literature on advanced hemostatic products. J. Trauma-Injury Infection and Critical Care 60:674-682. https://doi.org/10.1097/01.ta.0000196672.47783.fd
  30. SAS. 2003. SAS user's guide: Statistics. Version 9.0. SAS Institute., Cary, NC.
  31. Shi, B. L., D. F. Li, X. S. Piao, and S. M. Yan. 2005. Effects of chitosan on growth performance and energy and protein utilisation in broiler chickens. Br. Poult. Sci. 46:516-519. https://doi.org/10.1080/00071660500190785
  32. Smith, F., J. E. Clark, B. L. Overman, C. C. Tozel, J. H. Huang, J. E. Rivier, A. T. Blisklager, and A. J. Moeser. 2010. Early weaning stress impairs development of mucosal barrier function in the porcine intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 298:352-363. https://doi.org/10.1152/ajpgi.00081.2009
  33. Tang, Z. R., Y. L. Yin, C. M. Nyachoti, R. L. Huang, T. J. Li, C. B. Yang, X. J. Yang, J. Gong, J. Peng, D. S. Qi, J. J. Xing, Z. H. Sun, and M. Z. Fan. 2005. Effect of dietary supplementation of chitosan and galacto-mannan-oligosaccharide on serum parameters and the insulin-like growth factor-I mRNA expression in early-weaned piglets. Domest. Anim. Endocrinol. 28:430-441. https://doi.org/10.1016/j.domaniend.2005.02.003
  34. Torzsas, T. L, C. W. Kendall, M. Sugano, Y. Iwamoto, and A. V. Rao. 1996. The influence of high and low molecular weight chitosan on colonic cell proliferation and aberrant crypt foci development in CF1 mice. Food Chem. Toxicol. 34:73-77. https://doi.org/10.1016/0278-6915(95)00083-6
  35. Tsukada, K., T. Matsumoto, K. Aizawa, A. Tokoro, R. Naruse, S. Suzuki, and M. Suzuki. 1990. Antimetastatic and growth-inhibitory effects of N-acetylchitohexaose in mice bearing Lewis lung carcinoma. Jpn. J. Cancer Res. 81:259-265. https://doi.org/10.1111/j.1349-7006.1990.tb02559.x
  36. Wang, S. Q., and C. S. Zhang. 2004. Chitin, chitosan and their applications in aquaculture. Feed Res. 5:25-28.
  37. Xu, C. L., and Y. Z. Wang. 2005. The applications of chitin in aquaculture. China Feed. 7:30-32.
  38. Xu, Y. Q., B. L. Shi, J. L. Li, T. Y. Li, Y. W. Guo, L. X. Tian, X. Z. Fu, and L. Hong. 2012. Effects of chitosan on intestinal flora in weaned pigs. Feed Res. 10:54-56.
  39. Xu, Z. R., C. H. Hu, M. S. Xia, X. A. Zhan, and M. Q. Wang. 2003. Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers. Poult. Sci. 82:1030-1036. https://doi.org/10.1093/ps/82.6.1030
  40. Yao, H. T., S. Y. Huang, and M. T. Chiang. 2006. Effect of chitosan on plasma cholesterol and glucose concentration in streptozotocin-induced diabetic rats. Taiwan J. Agric. Chem. Food Sci. 44:122-132.
  41. Yao, H. T., S. Y. Huang, and M. T. Chiang. 2008. A comparative study on hypoglycemic and hypocholesterolemic effects of high and low molecular weight chitosan in streptozotocin-induced diabetic rats. Food Chem. Toxicol. 46:1525-1534. https://doi.org/10.1016/j.fct.2007.12.012
  42. Yin,Y. L., Z. R. Tang, Z. H. Sun, Z. Q. Liu, T. J. Li, R. L. Huang, Z. Ruan, Z. Y. Deng, B. Gao, L. X. Chen, G. Y. Wu, and S. W. Kim. 2008. Effect of galacto-mannan-oligosaccharides or chitosan supplementation on cytoimmunity and humoral immunity response in early-weaned piglets. Asian-Aust. J. Anim. Sci. 21:723-731. https://doi.org/10.5713/ajas.2008.70408
  43. Yuan, S. B., and H. Chen. 2012. Effects of dietary supplementation of chitosan on growth performance and immune index in ducks. Afr. J. Biotechnol. 11:3490-3495.

피인용 문헌

  1. Chitosan and its oligosaccharide derivatives (chito-oligosaccharides) as feed supplements in poultry and swine nutrition vol.99, pp.1, 2014, https://doi.org/10.1111/jpn.12222
  2. The Expression of Zinc Transporters Changed in the Intestine of Weaned Pigs Exposed to Zinc Chitosan Chelate vol.174, pp.2, 2016, https://doi.org/10.1007/s12011-016-0732-1
  3. Growth performance and immune responses of gibel carp, Carassius auratus gibelio, fed with graded level of rare earth-chitosan chelate vol.24, pp.2, 2016, https://doi.org/10.1007/s10499-015-9937-0
  4. vol.10, pp.1178-6388, 2017, https://doi.org/10.1177/1178638817710666
  5. Efficacy of dietary chitosan on growth performance, haematological parameters and gut function in broilers pp.1828-051X, 2017, https://doi.org/10.1080/1828051X.2017.1373609
  6. Effects of chitosan as growth promoter on diarrhea, nutrient apparent digestibility, fecal microbiota and immune response in weaned piglets vol.46, pp.1, 2018, https://doi.org/10.1080/09712119.2018.1531763
  7. Gut health and serum growth hormone levels of broiler chickens fed dietary chitin and chitosan from cricket and shrimp vol.98, pp.2, 2019, https://doi.org/10.3382/ps/pey419
  8. Biological Effects and Applications of Chitosan and Chito-Oligosaccharides vol.10, pp.None, 2013, https://doi.org/10.3389/fphys.2019.00516
  9. Impact of dietary chitosan oligosaccharide and its effects on coccidia challenge in broiler chickens vol.60, pp.6, 2013, https://doi.org/10.1080/00071668.2019.1662887
  10. Tenebrio molitor and Zophobas morio Full-Fat Meals in Broiler Chicken Diets: Effects on Nutrients Digestibility, Digestive Enzyme Activities, and Cecal Microbiome vol.9, pp.12, 2013, https://doi.org/10.3390/ani9121128
  11. Duodenal Histomorphological Changes in Broilers Administered poly d, l-lactic-coglycolic acid (PLGA ) Nanoparticles Encapsulated with Peptide vol.44, pp.1, 2013, https://doi.org/10.30539/ijvm.v44i1.945
  12. Nanochitosan Effect on Biomolecular, Hypolipidemic in Rats and Incorporation in Functional Yogurt vol.24, pp.5, 2021, https://doi.org/10.3923/pjbs.2021.548.561