DOI QR코드

DOI QR Code

Focal adhesion linker proteins expression of fibroblast related to adhesion in response to different transmucosal abutment surfaces

  • Moon, Yeon-Hee (Dental Science Research Institute, School of Dentistry, Chonnam National University) ;
  • Yoon, Mi-Kyeong (Dental Science Research Institute, School of Dentistry, Chonnam National University) ;
  • Moon, Jung-Sun (Dental Science Research Institute, School of Dentistry, Chonnam National University) ;
  • Kang, Jee-Hae (Dental Science Research Institute, School of Dentistry, Chonnam National University) ;
  • Kim, Sun-Hun (Dental Science Research Institute, School of Dentistry, Chonnam National University) ;
  • Yang, Hong-Seo (Dental Science Research Institute, School of Dentistry, Chonnam National University) ;
  • Kim, Min-Seok (Dental Science Research Institute, School of Dentistry, Chonnam National University)
  • 투고 : 2013.04.24
  • 심사 : 2013.08.06
  • 발행 : 2013.08.31

초록

PURPOSE. To evaluate adherence of human gingival fibroblasts (HGFs) to transmucosal abutment of dental implant with different surface conditions with time and to investigate the roles of focal adhesion linker proteins (FALPs) involved in HGFs adhesion to abutment surfaces. MATERIALS AND METHODS. Morphologies of cultured HGFs on titanium and ceramic discs with different surface were observed by scanning electron microscopy. Biocompatibility and focal adhesion were evaluated by ultrasonic wave application and cell viability assay. FALPs expression levels were assessed by RT-PCR and western blot. RESULTS. There seemed to be little difference in biocompatibility and adhesion strength of HGFs depending on the surface conditions and materials. In all experimental groups, the number of cells remaining on the disc surface after ultrasonic wave application increased more than 2 times at 3 days after seeding compared to 1-day cultured cells and this continued until 7 days of culture. FALPs expression levels, especially of vinculin and paxillin, also increased in 5-day cultured cells compared to 1-day cultured fibroblasts on the disc surface. CONCLUSION. These results might suggest that the strength of adhesion of fibroblasts to transmucosal abutment surfaces increases with time and it seemed to be related to expressions of FALPs.

키워드

참고문헌

  1. Palma-Carrio C, Balaguer-Martinez J, Penarrocha-Oltra D, Penarrocha-Diago M. Irritative and sensory disturbances in oral implantology. Literature review. Med Oral Patol Oral Cir Bucal 2011;16:e1043-6.
  2. Berglundh T, Lindhe J, Ericsson I, Marinello CP, Liljenberg B, Thomsen P. The soft tissue barrier at implants and teeth. Clin Oral Implants Res 1991;2:81-90. https://doi.org/10.1034/j.1600-0501.1991.020206.x
  3. Listgarten MA, Buser D, Steinemann SG, Donath K, Lang NP, Weber HP. Light and transmission electron microscopy of the intact interfaces between non-submerged titaniumcoated epoxy resin implants and bone or gingiva. J Dent Res 1992;71:364-71. https://doi.org/10.1177/00220345920710020401
  4. Berglundh T, Lindhe J. Dimension of the peri-implant mucosa: Biological width revisited. J Clin Periodontal 1996;23:971-3. https://doi.org/10.1111/j.1600-051X.1996.tb00520.x
  5. Ambrose EJ. The movements of fibrocytes. Exp Cell Res 1961;8:54-73. https://doi.org/10.1016/0014-4827(61)90340-8
  6. Burridge K, Fath K, Kelly T, Nuckolls G, Turner C. Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu Rev Cell Biol 1988;4:487-525. https://doi.org/10.1146/annurev.cb.04.110188.002415
  7. Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell 2002;110:673-87. https://doi.org/10.1016/S0092-8674(02)00971-6
  8. Owen GR, Meredith DO, ap Gwynn I, Richards RG. Focal adhesion quantification - a new assay of material biocompatibility? Review. Eur Cell Mater 2005;9:85-96.
  9. An N, Rausch-fan X, Wieland M, Matejka M, Andrukhov O, Schedle A. Initial attachment, subsequent cell proliferation/ viability and gene expression of epithelial cells related to attachment and wound healing in response to different titanium surfaces. Dent Mater 2012;28:1207-14. https://doi.org/10.1016/j.dental.2012.08.007
  10. Anselme K, Bigerelle M, Noel B, Dufresne E, Judas D, Iost A, Hardouin P. Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses. J Biomed Mater Res 2000;49:155-66. https://doi.org/10.1002/(SICI)1097-4636(200002)49:2<155::AID-JBM2>3.0.CO;2-J
  11. Boyan BD, Lohmann CH, Dean DD, Sylvia VL, Cochran DL, Schwartz Z. Mechanisms involved in osteoblast response to implant surface morphology. Annual Rev Mater Res 2001;31:357-71. https://doi.org/10.1146/annurev.matsci.31.1.357
  12. Garrod DR. Cell to cell and cell to matrix adhesion. BMJ 1993;306:703-5. https://doi.org/10.1136/bmj.306.6879.703
  13. Giancotti FG, Ruoslahti E. Integrin signaling. Science 1999; 285:1028-32. https://doi.org/10.1126/science.285.5430.1028
  14. Raisanen L, Kononen M, Juhanoja J, Varpavaara P, Hautaniemi J, Kivilahti J, Hormia M. Expression of cell adhesion complexes in epithelial cells seeded on biomaterial surfaces. J Biomed Mater Res 2000;49:79-87. https://doi.org/10.1002/(SICI)1097-4636(200001)49:1<79::AID-JBM10>3.0.CO;2-N
  15. Biggs MJ, Richards RG, Gadegaard N, Wilkinson CD, Dalby MJ. Regulation of implant surface cell adhesion: characterization and quantification of S-phase primary osteoblast adhesions on biomimetic nanoscale substrates. J Orthop Res 2007;25:273-82. https://doi.org/10.1002/jor.20319
  16. Arvidson K, Fartash B, Hilliges M, Kondell PA. Histological characteristics of peri-implant mucosa around Brånemark and single-crystal sapphire implants. Clin Oral Implants Res 1996;7:1-10. https://doi.org/10.1034/j.1600-0501.1996.070101.x
  17. Abrahamsson I, Berglundh T, Glantz PO, Lindhe J. The mucosal attachment at different abutments. An experimental study in dogs. J Clin Periodontol 1998;25:721-7. https://doi.org/10.1111/j.1600-051X.1998.tb02513.x
  18. Craig RG, Hanks CT. Cytotoxicity of experimental casting alloys evaluated by cell culture tests. J Dent Res 1990;69:1539-42. https://doi.org/10.1177/00220345900690081801
  19. Li D, Ferguson SJ, Beutler T, Cochran DL, Sittig C, Hirt HP, Buser D. Biomechanical comparison of the sandblasted and acid-etched and the machined and acid-etched titanium surface for dental implants. J Biomed Mater Res 2002;60:325-32. https://doi.org/10.1002/jbm.10063
  20. Martin JY, Schwartz Z, Hummert TW, Schraub DM, Simpson J, Lankford J Jr, Dean DD, Cochran DL, Boyan BD. Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63). J Biomed Mater Res 1995;29:389-401. https://doi.org/10.1002/jbm.820290314
  21. Kieswetter K, Schwartz Z, Hummert TW, Cochran DL, Simpson J, Dean DD, Boyan BD. Surface roughness modulates the local production of growth factors and cytokines by osteoblast-like MG-63 cells. J Biomed Mater Res 1996;32:55-63. https://doi.org/10.1002/(SICI)1097-4636(199609)32:1<55::AID-JBM7>3.0.CO;2-O
  22. Batzer R, Liu Y, Cochran DL, Szmuckler-Moncler S, Dean DD, Boyan BD, Schwartz Z. Prostaglandins mediate the effects of titanium surface roughness on MG63 osteoblast-like cells and alter cell responsiveness to 1 alpha,25-(OH)2D3. J Biomed Mater Res 1998;41:489-96. https://doi.org/10.1002/(SICI)1097-4636(19980905)41:3<489::AID-JBM20>3.0.CO;2-C
  23. Lossdorfer S, Schwartz Z, Wang L, Lohmann CH, Turner JD, Wieland M, Cochran DL, Boyan BD. Microrough implant surface topographies increase osteogenesis by reducing osteoclast formation and activity. J Biomed Mater Res A 2004; 70:361-9.
  24. Kononen M, Hormia M, Kivilahti J, Hautaniemi J, Thesleff I. Effect of surface processing on the attachment, orientation, and proliferation of human gingival fibroblasts on titanium. J Biomed Mater Res 1992;26:1325-41. https://doi.org/10.1002/jbm.820261006
  25. Grossner-Schreiber B, Herzog M, Hedderich J, Duck A, Hannig M, Griepentrog M. Focal adhesion contact formation by fibroblasts cultured on surface-modified dental implants: an in vitro study. Clin Oral Implants Res 2006;17:736-45. https://doi.org/10.1111/j.1600-0501.2006.01277.x
  26. Park J, Bauer S, von der Mark K, Schmuki P. Nanosize and vitality: $TiO_2$ nanotube diameter directs cell fate. Nano Lett 2007;7:1686-91. https://doi.org/10.1021/nl070678d
  27. Park J, Bauer S, Schlegel KA, Neukam FW, von der Mark K, Schmuki P. $TiO_2$ nanotube surfaces: 15 nm-an optimal length scale of surface topography for cell adhesion and differentiation. Small 2009;5:666-71. https://doi.org/10.1002/smll.200801476
  28. Meredith DO, Eschbach L, Wood MA, Riehle MO, Curtis AS, Richards RG. Human fibroblast reactions to standard and electropolished titanium and Ti-6Al-7Nb, and electropolished stainless steel. J Biomed Mater Res A 2005;75:541-55.
  29. Derhami K, Wolfaardt JF, Wennerberg A, Scott PG. Quantifying the adherence of fibroblasts to titanium and its enhancement by substrate-attached material. J Biomed Mater Res 2000;52:315-22. https://doi.org/10.1002/1097-4636(200011)52:2<315::AID-JBM10>3.0.CO;2-2
  30. Groessner-Schreiber B, Neubert A, Müller WD, Hopp M, Griepentrog M, Lange KP. Fibroblast growth on surfacemodified dental implants: an in vitro study. J Biomed Mater Res A 2003;64:591-9.
  31. Reyes CD, García AJ. A centrifugation cell adhesion assay for high-throughput screening of biomaterial surfaces. J Biomed Mater Res A 2003;67:328-33.
  32. Hunter A, Archer CW, Walker PS, Blunn GW. Attachment and proliferation of osteoblasts and fibroblasts on biomaterials for orthopaedic use. Biomaterials 1995;16:287-95. https://doi.org/10.1016/0142-9612(95)93256-D
  33. Richards RG, Stiffanic M, Owen GR, Riehle M, Ap Gwynn I, Curtis AS. Immunogold labelling of fibroblast focal adhesion sites visualised in fixed material using scanning electron microscopy, and living, using internal reflection microscopy. Cell Biol Int 2001;25:1237-49. https://doi.org/10.1006/cbir.2001.0807
  34. Grover A, Rosentraus MJ, Sterman B, Snook ME, Adamson ED. An adhesion-defective variant of F9 embryonal carcinoma cells fails to differentiate into visceral endoderm. Dev Biol 1987;120:1-11. https://doi.org/10.1016/0012-1606(87)90098-4
  35. Rodriguez Fernandez JL, Geiger B, Salomon D, Ben-Ze'ev A. Overexpression of vinculin suppresses cell motility in BALB/c 3T3 cells. Cell Motil Cytoskeleton 1992;22:127-34. https://doi.org/10.1002/cm.970220206
  36. Rodriguez Fernandez JL, Geiger B, Salomon D, Ben-Ze'ev A. Suppression of vinculin expression by antisense transfection confers changes in cell morphology, motility, and anchoragedependent growth of 3T3 cells. J Cell Biol 1993;122:1285-94. https://doi.org/10.1083/jcb.122.6.1285
  37. Alenghat FJ, Fabry B, Tsai KY, Goldmann WH, Ingber DE. Analysis of cell mechanics in single vinculin-deficient cells using a magnetic tweezer. Biochem Biophys Res Commun 2000;277:93-9. https://doi.org/10.1006/bbrc.2000.3636
  38. Turner CE. Paxillin and focal adhesion signalling. Nat Cell Biol 2000;2:e231-6. https://doi.org/10.1038/35046659
  39. Brown MC, Turner CE. Paxillin: adapting to change. Physiol Rev 2004;84:1315-39. https://doi.org/10.1152/physrev.00002.2004

피인용 문헌

  1. A new method using insert-based systems (IBS) to improve cell behavior study on flexible and rigid biomaterials vol.68, pp.6, 2016, https://doi.org/10.1007/s10616-016-9964-3
  2. 임플란트 지대주와 임플란트 주위 연조직의 반응에 관한 고찰 vol.32, pp.4, 2013, https://doi.org/10.14368/jdras.2016.32.4.263
  3. Adhesion Behaviour of Primary Human Osteoblasts and Fibroblasts on Polyether Ether Ketone Compared with Titanium under In Vitro Lipopolysaccharide Incubation vol.12, pp.17, 2013, https://doi.org/10.3390/ma12172739
  4. Enhanced Human Gingival Fibroblast Response and Reduced Porphyromonas gingivalis Adhesion with Titania Nanotubes vol.2020, pp.None, 2013, https://doi.org/10.1155/2020/5651780
  5. Novel Yttria-Stabilized Zirconium Oxide and Lithium Disilicate Coatings on Titanium Alloy Substrate for Implant Abutments and Biomedical Application vol.13, pp.9, 2013, https://doi.org/10.3390/ma13092070
  6. In vitro effects of photobiomodulation applied to gingival fibroblasts cultured on titanium and zirconia surfaces and exposed to LPS from Escherichia coli vol.35, pp.9, 2013, https://doi.org/10.1007/s10103-020-03062-7