DOI QR코드

DOI QR Code

나노유체를 이용한 평판형 태양열 집열기의 효율에 관한 연구

Study on Efficiency of Flat-Plate Solar Collector Using Nanofluids

  • 이승현 (한국항공대학교 항공우주 및 기계공학부) ;
  • 장석필 (한국항공대학교 항공우주 및 기계공학부)
  • Lee, Seung-Hyun (School of Aerospace and Mechanical Engineering, Korea Aerospace Univ.) ;
  • Jang, Seok Pil (School of Aerospace and Mechanical Engineering, Korea Aerospace Univ.)
  • 투고 : 2013.01.10
  • 심사 : 2013.07.15
  • 발행 : 2013.09.01

초록

본 논문에서는 나노유체를 사용한 평판형 집열기의 효율을 예측하기 위한 이론적인 연구를 수행하였다. 평판형 태양열 집열기 내부의 온도분포에 관한 해석적 해를 구하기 위해 무차원화된 2 차원 열 확산방정식을 풀었으며, 이 과정에서 흡광계수와 복사강도는 파장에 독립적이라고 가정하였다. 이렇게 주어진 식을 바탕으로, 물-기반 단일벽 탄소나노혼 나노유체를 작동유체로 사용할 경우 나노입자의 부피비, 열손실의 크기, 집열기의 높이에 따른 무차원 온도분포를 파악해 보았다. 마지막으로 나노유체 기반 평판형 집열기의 효율을 예측해 본 결과 일정 형상조건 이내에서 나노유체 태양열 집열기가 기존 집열기 보다 높은 효율을 가질 수 있음을 파악하였다.

An analytical study is conducted to assess the efficiency of a flat-plate solar collector using nanofluids. The nondimensionalized 2D heat diffusion equation is solved by assuming a wavelength-independent extinction coefficient and intensity to obtain the analytical solution of the temperature distribution in the flat-plate solar collector. The dimensionless temperature distribution is investigated as functions of the volume fraction of the nanofluids, magnitude of heat loss, and collector's depth based on the analytical solution when using water-based single-walled carbon nanohorn (SWCNH) nanofluids as a working fluid. Finally, the efficiency of the flat-plate solar collector using the nanofluids is predicted and compared with that of the conventional solar collector. The results indicate that the efficiency of the nanofluid solar collector is better than that of the conventional solar collector under specific geometrical conditions.

키워드

참고문헌

  1. Otanica, T.P., Phelan, P.E., Prasher, R.S., Rosengarten, G. and Taylor, R. A., 2010, "Nanofluid-Based Direct Absorption Solar Collector," J. Renewable Sustainable Energy, Vol. 2, p. 033102. https://doi.org/10.1063/1.3429737
  2. Minardi, J.E. and Chuang, H.N., 1975, "Performance of a 'Black' Liquid Flat-plate Solar Collector," Sol. Energy, Vol. 17, pp. 179-183. https://doi.org/10.1016/0038-092X(75)90057-2
  3. Bertocchi, R., Karni, J. and Kribus, A., 2004, "Experimental Evaluation of a Non-isothermal High Temperature Solar Particle Receiver," Energy, Vol. 29, pp. 687-700. https://doi.org/10.1016/j.energy.2003.07.001
  4. Sani, E., Barison, S., Pagura, C., Mercatelli, L., Sansoni, P., Fontani, D., Jafrancesco, D. and Francini F., 2010, "Carbon Nanohorn-based Nanofluids as Direct Sunlight Absorbers," Opt. Express, Vol. 18, pp. 5179-5187. https://doi.org/10.1364/OE.18.005179
  5. Mercatelli, L., Sani, E., Zaccanti, G., Martelli, F., Di Ninni P., Barison, S., Pagura, C., Agresti F. and Jafrancesco, D., 2011, "Absorption and Scattering Properties of Carbon Nanohorn-based Nanofluids for Direct Sunlight Absorbers," Nanoscale Res. Lett., Vol. 6, p. 282. https://doi.org/10.1186/1556-276X-6-282
  6. Lee, J.-H., Lee, S.-H., Choi, C.J., Jang, S.P. and Choi, S.U.S., 2010, "A Review of Thermal Conductivity Data, Mechanisms and Models for Nanofluids," Int. J. Micro-Nano Scale Transport, Vol. 1, pp. 269-322. https://doi.org/10.1260/1759-3093.1.4.269
  7. Veeraragavan, A., Lenert, A., Yilbas, B., Al-Dini, S., and Wang, E. N., 2012, "Analytical Model for the Design of Volumetric Solar Flow Receivers," Int. J. Heat Mass Transfer, Vol. 55, pp. 556-564. https://doi.org/10.1016/j.ijheatmasstransfer.2011.11.001
  8. Streed, E. R., Hill, J. E., Thomas, W. C., Dawson, A. G. and Wood, B. D., "Results and Analysis of a Round Robin Test Program for Liquid-heating Flat-plate Solar Collectors," Sol. Energy, Vol. 22, pp. 235-249