• Title/Summary/Keyword: Single Wall Carbon Nanohorn, SWCNH

Search Result 2, Processing Time 0.016 seconds

Theoretical Investigation on the Efficiency of Nanofluid-based Flat-Plate Solar Collector (나노유체 기반 평판형 태양열 집열기의 효율에 관한 이론적인 연구)

  • Lee, Seung-Hyun;Kim, Hyun-Jin;Jang, Seok-Pil
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.188-193
    • /
    • 2012
  • Recently, the nanofluid which is stably dispersing or suspending of nanoparticles in the conventional heat transfer fluids (HTF) such as water and ethylene glycol has attracted significant interests as a solar thermal energy absorbing medium because they have excellent absorption and thermophysical properties compared to the typical HTF. In the present study, the efficiency of nanofluid-based flat-plate solar collector is analytically evaluated using the theoretical model of energy balance equation. The theoretical model considers the incoming solar radiation as a volumetric heat generation and the water-based single wall carbon nanohorn(SWCNH) nanofluid is used as a solar energy absorbing medium. Finally, the efficiency of nanofluid-based collector is calculated according to the volume fraction of SWCNH using the analytical solution.

  • PDF

Study on Efficiency of Flat-Plate Solar Collector Using Nanofluids (나노유체를 이용한 평판형 태양열 집열기의 효율에 관한 연구)

  • Lee, Seung-Hyun;Jang, Seok Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.9
    • /
    • pp.799-805
    • /
    • 2013
  • An analytical study is conducted to assess the efficiency of a flat-plate solar collector using nanofluids. The nondimensionalized 2D heat diffusion equation is solved by assuming a wavelength-independent extinction coefficient and intensity to obtain the analytical solution of the temperature distribution in the flat-plate solar collector. The dimensionless temperature distribution is investigated as functions of the volume fraction of the nanofluids, magnitude of heat loss, and collector's depth based on the analytical solution when using water-based single-walled carbon nanohorn (SWCNH) nanofluids as a working fluid. Finally, the efficiency of the flat-plate solar collector using the nanofluids is predicted and compared with that of the conventional solar collector. The results indicate that the efficiency of the nanofluid solar collector is better than that of the conventional solar collector under specific geometrical conditions.