DOI QR코드

DOI QR Code

무인 국방 로봇의 효과적인 다물체 동역학 해석을 위한 부분시스템 합성방법 기반 DAE 해석 기법 비교 연구

Comparative Study on DAE Solution Methods for Effective Multi-Body Dynamics Analysis of Unmanned Military Robot Based on Subsystem Synthesis Method

  • 김명호 (충남대학교 기계.기계설계.메카트로닉스공학과) ;
  • 김성수 (충남대학교 메카트로닉스공학과) ;
  • 윤홍선 (충남대학교 기계.기계설계.메카트로닉스공학과)
  • Kim, Myoung Ho (Graduate school of Mechanical.Mechanical Design.Mechatronics Engineering, Chungnam Nat'l Univ.) ;
  • Kim, Sung-Soo (Dept. of Mechatronics Engineering, Chungnam Nat'l Univ.) ;
  • Yun, Hong-Seon (Graduate school of Mechanical.Mechanical Design.Mechatronics Engineering, Chungnam Nat'l Univ.)
  • 투고 : 2012.12.28
  • 심사 : 2013.07.28
  • 발행 : 2013.09.01

초록

무인 국방 로봇의 실시간 해석을 위해서는 효과적인 해석기법이 필수적인 요소이다. 이러한 효과적인 해석을 위하여 부분시스템 합성방법이 개발되었다. 부분시스템 합성방법은 기준 물체의 운동방정식과 각 부분시스템들의 운동방정식을 독립적으로 계산함으로써 계산량의 이득을 볼 수 있다. 운동방정식은 미분방정식과 대수방정식이 혼합된 미분대수방정식으로 표현된다. 이러한 미분대수방정식의 정확하고 효과적인 해석을 위해서 직접 적분방법, 구속조건식 안정화기법, 일반 좌표 분할기법 등이 개발되었다. 본 논문에서는 무인 국방 로봇의 효과적인 해석을 위하여 부분시스템 합성방법을 적용하고 위에서 기술한 세 가지의 미분대수방정식 해석기법을 비교하는 연구를 수행하였다.

An effective method is necessary for the real-time analysis of an unmanned military robot. To achieve highly efficient simulations, a subsystem synthesis method has been developed. The subsystem synthesis method separately generates equations of motion for the base body and for the subsystem. The equations of motion are expressed by DAE, which consist of differential equations and algebraic equations. To increase the accuracy and efficiency of solutions, DAE solvers such as the Direct, CS (Constraint Stabilization), and GCP (Generalized Coordinate Partitioning) method are employed. In this study, the subsystem synthesis method is applied for effective multi-body dynamics analysis of an unmanned military robot, and a comparative study of three different DAE solvers is carried out.

키워드

참고문헌

  1. Yoo, W. S., Cho, D. H., Lee, J. H. and Yi, K. C., 2010, "Maneuvering Speed of an Off-road Autonomous Vehicle," Proceedings of MOVIC.
  2. Jeon, S. H., Lee. J. H. and Yoo. W. S., 2011, "Improvement of Maneuvering Stability of a 6x6 Vehicle using Control Schemes," Multibody dynamics.
  3. Lee. J. H. and Yoo. W. S., 2011, "Velocity Decision for Unmanned Ground Vehicle Considering Road Roughness," Trans. Korean Soc. Mech. Eng. A, pp.973-975.
  4. Kim, S. S., 2002, "A Subsystem Synthesis Method for Efficient Vehicle Multibody Dynamics," Multibody System Dynamics, Vol. 7, pp. 189-207. https://doi.org/10.1023/A:1014457111573
  5. Kim, S. S., Jo. J. Y., Jeong, W. H. and Wang, J. H., 2011, "Multibody Vehicle Dynamics Analysis using an Explicit-Implicit Integrator with Subsystem Synthesis Method," Proceedings of the ASME.
  6. Han, J. B., Jeong, W. H., Kim, S. S., 2010, "Subsystem Synthesis Method Based on Cartesian Coordinates for Unmanned Military Robot Multibody Dynamics," The Asian Conference on Multibody Dynamics.
  7. Haug, E. J., 1989, Computer-Aided Kinematics and Dynamics of Mechanical Systems, Vol. 1, Allyn and Bacon.
  8. Baumgarte, J., 1972, "Stabilization of Constraints and Integrals of Motion," Computer Methods in Appiled Mechanics and Engineering, Vol. 1, pp. 1-16. https://doi.org/10.1016/0045-7825(72)90018-7
  9. Wehage, R. A. and Haug, E. J., 1982, "Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Dynamic System," Journal of Mechanical Design, Vol. 104, No.1, pp. 247-255. https://doi.org/10.1115/1.3256318