References
- N. Dunford and J. T. Schwartz, Linear Operators, Part I, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1988.
-
D. Filipovic, M. Kupper, and N. Vogelpoth, Separation and duality in locally
$L^0$ -convex modules, J. Funct. Anal. 256 (2009), no. 12, 3996-4029. https://doi.org/10.1016/j.jfa.2008.11.015 - T. X. Guo, Extension theorems of continuous random linear operators on random domains, J. Math. Anal. Appl. 193 (1995), no. 1, 15-27. https://doi.org/10.1006/jmaa.1995.1221
- T. X. Guo, Module homomorphisms on random normed modules, Northeast. Math. J. 12 (1996), no. 1, 102-114.
- T. X. Guo, Some basic theories of random normed linear spaces and random inner product spaces, Acta Anal. Funct. Appl. 1 (1999), no. 2, 160-184.
- T. X. Guo, Survey of recent developments of random metric theory and its applications in China. II, Acta Anal. Funct. Appl. 3 (2001), no. 3, 208-230.
- T. X. Guo, The relation of Banach-Alaoglu theorem and Banach-Bourbaki-Kakutani- Smulian theorem in complete random normed modules to stratification structure, Sci. China Ser. A 51 (2008), no. 9, 1651-1663. https://doi.org/10.1007/s11425-008-0047-6
- T. X. Guo, Relations between some basic results derived from two kinds of topologies for a random locally convex module, J. Funct. Anal. 258 (2010), no. 9, 3024-3047. https://doi.org/10.1016/j.jfa.2010.02.002
- T. X. Guo, Recent progress in random metric theory and its applications to conditional risk measures, Sci. China Math. 54 (2011), no. 4, 633-660. https://doi.org/10.1007/s11425-011-4189-6
- T. X. Guo and S. B. Li, The James theorem in complete random normed modules, J. Math. Anal. Appl. 308 (2005), no. 1, 257-265. https://doi.org/10.1016/j.jmaa.2005.01.024
-
T. X. Guo and G. Shi, The algebraic structure of finitely generated
$L^0$ (F,K)-modules and the Helly theorem in random normed modules, J. Math. Anal. Appl. 381 (2011), no. 2, 833-842. https://doi.org/10.1016/j.jmaa.2011.03.069 - T. X. Guo and X. Zhang, Stone's representation theorem of a group of random unitary operators on complete complex random inner product modules (in Chinese), Sci. Sin. Math. 42 (2012), no. 3, 181-202. https://doi.org/10.1360/012011-16
- T. X. Guo and S. E. Zhao, On the random conjugate spaces of a random locally convex module, Acta Math. Sin. (Engl. Ser.) 28 (2012), no. 4, 687-996. https://doi.org/10.1007/s10114-011-0408-x
- T. X. Guo, S. E. Zhao, and X. L. Zeng, On random convex analysis-the analytic foundation of the module approach to conditional risk measures, arXiv:1210.1848, (2012).
- T. X. Guo and L. H. Zhu, A characterization of continuous module homomorphisms on random semi-normed modules and its applications, Acta Math. Sin. (Engl. Ser.) 19 (2003), no. 1, 201-208. https://doi.org/10.1007/s10114-002-0210-x
- B. Schweizer and A. Sklar, Probabilistic Metric Spaces, Elsevier/North-Holland, New York, 1983; Dover Publications, New York, 2005.
-
M. Z. Wu, The Bishops-Phelps theorem in complete random normed modules endowed with the
$({\varepsilon},{\lambda})$ -topology, J. Math. Anal. Appl. 391 (2012), no. 2, 648-952. https://doi.org/10.1016/j.jmaa.2012.02.037 - M. Z. Wu, A further study on the Riemann-intergrability for abstract-valued functions from a closed real interval to a complete random normed module (in Chinese), Sci. Sin. Math. 42 (2012), no. 9, 897-903. https://doi.org/10.1360/012012-267
- X. Zhang, On mean ergodic semigroups of random linear operators, Proc. Japan Acad. Ser. A Math. Sci. 88 (2012), no. 4, 53-58. https://doi.org/10.3792/pjaa.88.53
- X. Zhang, On conditional mean ergodic semigroups of random linear operators, J. Inequal. Appl. 150 (2012), 1-10.
- X. Zhang and T. X. Guo, Von Neumann's mean ergodic theorem on complete random inner product modules, Front. Math. China 6 (2011), no. 5, 965-985. https://doi.org/10.1007/s11464-011-0139-4
- S. E. Zhao and T. X. Guo, The random subreflexivity of complete random normed modules, Internat. J. Math. 23 (2012), no. 3, 1-14.
-
S. E. Zhao and G. Shi, A geometric form of the Hahn-Banach extension theorem for
$L^0$ linear functions and the Goldstine-Weston theorem in random normed modules (in Chinese), Sci. Sin. Math. 41 (2011), no. 9, 827-836. https://doi.org/10.1360/012011-75
Cited by
- -linear function pp.01704214, 2018, https://doi.org/10.1002/mma.5296