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ON CONTINUOUS MODULE HOMOMORPHISMS BETWEEN

RANDOM LOCALLY CONVEX MODULES

Xia Zhang

Abstract. Based on the four kinds of theoretical definitions of the con-
tinuous module homomorphism between random locally convex modules,
we first show that among them there are only two essentially. Further,
we prove that such two are identical if the family of L0-seminorms for the
former random locally convex module has the countable concatenation
property, meantime we also provide a counterexample which shows that
it is necessary to require the countable concatenation property.

1. Introduction

The notion of random normed modules (briefly, RN modules), which was
first introduced by Guo in [3] and subsequently elaborated in [5], is a random
generalization of that of ordinary normed spaces. Before 2009, an RN module
and its generalization—a random locally convex module [6] are often endowed
with the (ε, λ)-topology. In fact, the (ε, λ)-topology is very natural, for exam-
ple, let L0(F ,K) be the algebra of equivalence classes of random variables from
a probability space (Ω,F , P ) to the scalar field K of real or complex numbers,
then L0(F ,K) is a simpler RN module and the (ε, λ)-topology on L0(F ,K) is
exactly the topology of convergence in probability P . Thus, RN modules and
random locally convex modules are not locally convex space in general under
the (ε, λ)-topology, which also leads to the universal failure of the theory of
classical conjugate spaces to serve the development of RN modules, it is to
overcome this obstacle that the theory of random conjugate spaces universally
suitable for the development of RN modules and random locally convex mod-
ules has been developed [5]. In the past ten years from 1999 to 2009, the theory
of RN modules and random locally convex modules has obtain some deep ad-
vances under the framework of random conjugate spaces, for example, it was
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proved in [10] that the famous James theorem is always true for any complete
RN modules, whereas the famous determination theorem concerning the weak
compactness universally fails to hold (see [7] for details).

In 2009, motivated by financial applications, D. Filipović, M. Kupper and
N. Vogelpoth presented a new topology for RN modules and random locally
convex modules [2], called the locally L0-convex topology, so that the subse-
quent development of RN modules and random locally convex modules were
carried out under the framework of the two kinds of topologies. First, the
principal relations between some basic results derived from the two kinds
of topologies for random locally convex modules were studied in [8]. Then,
based on these, lots of new and basic researches have recently been done in
[11, 12, 13, 17, 18, 19, 20, 21, 22, 23]. In this process, Guo first deeply considers
the problem of applying the theory of RN modules and random locally convex
modules to L0-conditional risk measures, for example, the Fenchel-Moreau dual
representation theorem and the continuity and subdifferentiability theorems for
L0-convex functions were pointed out in a proper form in [9], subsequently, Guo
found that the study of Lp-conditional risk measures can be incorporated into
that of Lp

F(E)-conditional risk measures and further established a complete
random convex analysis over random locally convex modules under the two
kinds of topologies in [14].

Recently, the development of the theory of random conjugate spaces has
been occupying a central place in random metric theory. In particular, Guo
and Zhao discussed four kinds of the random conjugate spaces of a random
locally convex module under the two kinds of topologies and obtained some
crucial results in [13], which motivated the author in this paper to study the
precise relations among four kinds of the continuous module homomorphism
between random locally convex modules. What is more important is that a
counterexample is constructed in this process, which shows that the countable
concatenation property is essential, and this counterexample can also be applied
to random conjugate spaces.

To introduce the main results of this paper, we first recall some notation and
terminology as follows. Throughout the paper,K always denotes the scalar field
R of real numbers or C of complex numbers, (Ω,F , P ) a probability space and
L0(F ,K) the algebra of equivalence classes of K-valued random variables on
(Ω,F , P ) under the ordinary addition, multiplication and scalar multiplication
operations on equivalence classes.

Denote by L̄0(F , R) the set of equivalence classes of extended real-valued
random variables on (Ω,F , P ). Then it is well known from [1] that L̄0(F , R)
is partially ordered by ξ ≤ η if and only if ξ0(ω) ≤ η0(ω) for P -almost all ω
in Ω (briefly, a.s.), where ξ0 and η0 are arbitrarily chosen representatives of ξ
and η in L̄0(F , R), respectively. Furthermore, every subset H of L̄0(F , R) has
a supremum and infimum, denoted by

∨

H and
∧

H , respectively. It is also
well known from [1] that L0(F , R), as a sublattice of L̄0(F , R), is a complete
lattice in the sense that every subset with an upper bound has a supremum.
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As usual, ξ > η means ξ ≥ η and ξ 6= η, whereas ξ > η on A means
ξ0(ω) > η0(ω) a.s. on A for any A ∈ F and ξ and η in L̄0(F , R), where ξ0 and
η0 are arbitrarily chosen representatives of ξ and η, respectively.

Besides, we denote L0
+(F) = {ξ ∈ L0(F , R) | ξ ≥ 0} and L0

++(F) = {ξ ∈
L0(F , R) | ξ > 0 on Ω}.

Definition 1.1 ([5, 6, 9]). An ordered pair (S, ‖ · ‖) is called an RN module
over K with base (Ω,F , P ) if S is a left module over the algebra L0(F ,K) and
‖ · ‖ is a mapping from S to L0

+(F) such that the following three axioms are
satisfied:

(1) ‖x‖ = 0 if and only if x = θ (the null vector of S);
(2) ‖ξx‖ = |ξ|‖x‖, ∀ξ ∈ L0(F ,K) and x ∈ S;
(3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖, ∀x, y ∈ S,

where the mapping ‖ · ‖ is called the L0-norm on S and ‖x‖ is called the L0-
norm of a vector x ∈ S. Furthermore, a mapping ‖ · ‖ : S → L0

+(F) satisfying
(2) and (3) is called an L0-seminorm on S.

Definition 1.2 ([6]). An ordered pair (S,P) is called a random locally module
over K with base (Ω,F , P ) if S is a left module over the algebra L0(F ,K) and
P is a family of mappings from S to L0

+(F) such that the following two axioms
are satisfied:

(1) Each ‖ · ‖ ∈ P is an L0-seminorm on S;
(2)

∨

{‖x‖ | ‖ · ‖ ∈ P} = 0 implies x = θ.

In addition, it is easy to see that when P reduces to a singleton {‖ · ‖}, then
a random locally convex module (S,P) is exactly an RN module. Specifically,
(L0(F ,K), | · |) is an RN module.

Given two random locally convex modules (S1,P1) and (S2,P2) overK with
base (Ω,F , P ), for the sake of convenience, we always denote the (ε, λ)-topology
and the locally L0-convex topology for (Si,P i) by Tε,λ and Tc (i = 1, 2),
respectively (see [2, 8] and also Section 2 for the definitions of two kinds of
topologies). It should be pointed out that (L0(F ,K), Tε,λ) is a topological
algebra, whereas (L0(F ,K), Tc) is only a topological ring (see [8] for details).

We can now introduce Definition 1.3 below.

Definition 1.3. Let (S1,P1) and (S2,P2) be two random locally convex mod-
ules overK with base (Ω,F , P ) and define B(S1

ε,λ, S
2
ε,λ), B(S1

c , S
2
c ), B(S1

c , S
2
ε,λ)

and B(S1
ε,λ, S

2
c ) as follows:

(1) B(S1
ε,λ, S

2
ε,λ) = {T | T is a continuous module homomorphism from

(S1, Tε,λ) to (S2, Tε,λ)};
(2) B(S1

c , S
2
c ) = {T | T is a continuous module homomorphism from (S1, Tc)

to (S2, Tc)};
(3) B(S1

c , S
2
ε,λ) = {T | T is a continuous module homomorphism from

(S1, Tc) to (S2, Tε,λ)}, where (S2, Tε,λ) is viewed as a topological module over
the topological ring (L0(F ,K), Tε,λ);
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(4) B(S1
ε,λ, S

2
c ) = {T | T is a continuous module homomorphism from

(S1, Tε,λ) to (S2, Tc)}, where (S1, Tε,λ) is viewed as a topological module over
the topological ring (L0(F ,K), Tε,λ).

Since the locally L0-convex topology of random locally convex modules is
much stronger than its (ε, λ)-topology, one can obtain that

B(S1
ε,λ, S

2
c ) ⊆ B(S1

c , S
2
c ) ⊆ B(S1

ε,λ, S
2
ε,λ) ⊆ B(S1

c , S
2
ε,λ).

In particular, if we take (S2,P2)=(L0(F ,K), |·|), then B(S1
ε,λ, S

2
ε,λ), B(S1

c , S
2
c ),

B(S1
c , S

2
ε,λ) and B(S1

ε,λ, S
2
c ) are exactly (S1

ε,λ)
∗, (S1

c )
∗, (S1

max)
∗ and (S1

min)
∗ in

[13]. In fact, it is the relations among (S1
ε,λ)

∗, (S1
c )

∗, (S1
max)

∗ and (S1
min)

∗ that
motivate the author in this paper to study the relations among the above four
kinds of continuous module homomorphisms.

Based on the above preliminaries, we present the main results of this paper
as follows:

Theorem 1.4. Let (S1,P1) and (S2,P2) be two random locally convex modules

over K with base (Ω,F , P ) and T ∈ B(S1
ε,λ, S

2
c ). If (Ω,F , P ) is nonatomic,

then Tx = θ, ∀x ∈ S1, namely B(S1
ε,λ, S

2
c ) = {θ}.

Theorem 1.5. Let (S1,P1) and (S2,P2) be two random locally convex modules

over K with base (Ω,F , P ). If P1 has the countable concatenation property,

then B(S1
c , S

2
c ) = B(S1

ε,λ, S
2
ε,λ).

Theorem 1.6. Let (S1,P1) and (S2,P2) be two random locally convex modules

over K with base (Ω,F , P ). Then B(S1
ε,λ, S

2
ε,λ) = B(S1

c , S
2
ε,λ).

It follows from Theorems 1.4 and 1.6 above that among the four kinds of
continuous module homomorphisms only B(S1

ε,λ, S
2
ε,λ) and B(S1

c , S
2
c ) are uni-

versally suitable for the current development of the theory of random locally
convex modules, and Theorem 1.5 shows that they are identical if P1 has the
countable concatenation property. It is noteworthy that a counterexample is
constructed in Section 3 of this paper, which shows that Theorem 1.5 may be
not true if P1 does not have such property.

2. Two kinds of topologies

For later use in Section 3 of this paper, let us briefly recall some notions
and facts about the (ε, λ)-topology and locally L0-convex topology for random
locally convex modules in this section.

In the sequel, for a random locally convex module (S,P) and for any finite
subfamily Q ⊂ P , ‖ · ‖Q always denotes the L0-seminorm defined by

‖x‖Q =
∨

{‖x‖ | ‖ · ‖ ∈ Q}, ∀x ∈ S,

unless stated otherwise.
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The (ε, λ)-topology, which is inherited from B. Schweizer and A. Sklar’s work
in 1960, has a long history [16]. Motivated by the above work, Guo introduced
the (ε, λ)-topology for a random locally convex module.

Proposition 2.1 ([6]). Let (S,P) be a random locally convex module over K
with base (Ω,F , P ). For any real numbers ε > 0, 0 < λ < 1 and any finite

subfamily Q of P, let

Nθ(Q, ε, λ) = {x ∈ S |P{ω ∈ Ω | ‖x‖Q(ω) < ε} > 1− λ}

and

Uθ = {Nθ(Q, ε, λ) | Q ⊂ P finite, ε > 0, 0 < λ < 1},

then Uθ is a local base at θ of some Hausdorff linear topology, called the (ε, λ)-
topology induced by P. Further, we have the following statements:

(1) L0(F ,K) is a topological algebra over K endowed with its (ε, λ)-topo-
logy, which is exactly the topology of convergence in probability P ;

(2) S is a topological module over the topological algebra L0(F ,K) when S
and L0(F ,K) are endowed with their respective (ε, λ)-topologies;

(3) A net {xα, α ∈ ∧} in S converges in the (ε, λ)-topology to x ∈ S if

and only if {‖xα − x‖, α ∈ ∧} converges in probability P to 0 for each

‖ · ‖ ∈ P.

Proposition 2.2 ([2, 8]). Let (S,P) be a random locally convex module over

K with base (Ω,F , P ). For any ε ∈ L0
++(F) and Q ⊂ P finite, let

Nθ(Q, ε) = {x ∈ S | ‖x‖Q ≤ ε}

and

Uθ = {Nθ(Q, ε) |Q ⊂ P finite, ε ∈ L0
++(F)}.

A set G ⊂ S is called Tc-open if for every x ∈ G there exists some Nθ(Q, ε) ∈ Uθ

such that x+Nθ(Q, ε) ⊂ G. Let Tc be the family of Tc-open subsets, then Tc is

a Hausdorff topology on S, called the locally L0-convex topology induced by P.

Further, the following statements are true:

(1) L0(F ,K) is a topological ring endowed with its locally L0-convex topo-

logy;
(2) S is a topological module over the topological ring L0(F ,K) when S and

L0(F ,K) are endowed with their respective locally L0-convex topologies;
(3) A net {xα, α ∈ ∧} in S converges in the locally L0-convex topology

to x ∈ S if and only if {‖xα − x‖, α ∈ ∧} converges in the locally

L0-convex topology of L0(F ,K) to θ for each ‖ · ‖ ∈ P.

Since Tc is not necessarily a linear topology as proved in [8], but (S, Tc) is al-
ways a topological group with respect to the addition operation for any random
locally convex module (S,P), and hence Tc-Cauchy nets and Tc-completeness
are still well defined. It should be pointed out that Tc is called locally L0-
convex because it has a striking local base Uθ = {Nθ(Q, ε) | Q ⊂ P finite and
ε ∈ L0

++}, each member U of which is:
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(i) L0-convex: ξ · x+ (1− ξ) · y ∈ U for any x, y ∈ U and ξ ∈ L0
+ such that

0 ≤ ξ ≤ 1;
(ii) L0-absorbent: there is ξ ∈ L0

++ for each x ∈ S such that x ∈ ξ · U ;
(iii) L0-balanced: ξ · x ∈ U for any x ∈ U and any ξ ∈ L0(F ,K) such that

|ξ| ≤ 1.

Remark 2.1. As shown in [8, 9], the (ε, λ)-topology and the locally L0-convex
topology have their respective advantages and disadvantages and they can com-
plement each other in the study of random locally convex modules.

3. Proof of main results

3.1. Proof of Theorem 1.4

Let S be a left module over that algebra L0(F ,K), a module homomorphism
f : S → L0(F ,K) is called an L0-linear function. In order to give the proof of
Theorem 1.4, let us recall Proposition 3.1 below.

Proposition 3.1 ([8]). Let S be a left module over that algebra L0(F ,K),
M ⊂ S an L0(F ,K)-submodule, f : M → L0(F ,K) is an L0-linear function

and p : S → L0(F ,K) an L0-seminorm such that |f(x)| ≤ p(x), ∀x ∈ M . Then

there exists an L0-linear function g : S → L0(F ,K) such that g extends f and

|g(x)| ≤ p(x), ∀x ∈ S.

In [13], Guo and Zhao obtained an important result, i.e., Lemma 3.1 below,
which plays a key role in the proof of Theorem 1.4. Now let us recall the notion
of an atom. Let (Ω,F , P ) be a probability space, a set A ∈ F with P (A) > 0
is called an atom if B ∈ F and B ⊂ A, then either P (B) = 0 or P (A \B) = 0.
Clearly, if A1 and A2 are atoms, then either P (A1∩A2) = 0 or P (A1△A2) = 0.
A probability space without any atoms is called nonatomic.

Lemma 3.1 ([13]). Let (S1,P1) be a random locally convex module over K
with base (Ω,F , P ) and f ∈ (S1

min)
∗. If (Ω,F , P ) is nonatomic, then f(x) = 0,

∀x ∈ S1.

We can now prove Theorem 1.4.

Proof of Theorem 1.4. For any T ∈ B(S1
ε,λ, S

2
c ) and f ∈ (S2

c )
∗, then f ◦ T ∈

(S1
min)

∗. Since (Ω,F , P ) is nonatomic, it follows from Lemma 3.1 that

(f ◦ T )(x) = f(Tx) = 0, ∀x ∈ S1.(3.1)

We can assert that Tx = θ, ∀x ∈ S1. In fact, if not, there exists some x0 ∈ S1

such that

P [
∨

{‖Tx0‖ | ‖ · ‖ ∈ P2} = 0] < 1,

namely there exists some ‖ · ‖0 ∈ P2 such that

P [‖Tx0‖0 > 0] > 0.
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Let

M = {ξ · Tx0 | ξ ∈ L0(F ,K)},

then M ⊂ S2 and M is an L0(F ,K)-submodule of S2.
Let

f̃(ξ · Tx0) = ξ · ‖Tx0‖0, ∀ξ ∈ L0(F ,K),

then f̃ : M → L0(F ,K) is an L0-linear function and

|f̃(ξ · Tx0)| = |ξ| · ‖Tx0‖0 = ‖ξ · Tx0‖0.

Define the mapping p : S2 → L0(F ,K) by p(x) = ‖x‖0 for any x ∈ S2. It is

clear that p is an L0-seminorm and |f̃(y)| ≤ p(y) for any y ∈ M . Then it follows
from Proposition 3.1 that there exists an L0-linear function g : S → L0(F ,K)
such that g extends f and |g(x)| ≤ p(x), ∀x ∈ S. Consequently, g ∈ (S2

c )
∗ and

g(Tx0) = f̃(Tx0) = ‖Tx0‖0, which is in contradiction to the equation (3.1).
This completes the proof. �

3.2. The relation between B(S1

c
, S2

c
) and B(S1

ε,λ
, S2

ε,λ
)

In order to give the relation between B(S1
c , S

2
c ) and B(S1

ε,λ, S
2
ε,λ), we first

introduce the notion of a.s. bounded random linear operator of type I from
(S1,P2) to (S2,P2) and give a characterization of each element in B(S1

c , S
2
c ).

Definition 3.1. Let (S1,P1) and (S2,P2) be two random locally convex mod-
ules over K with base (Ω,F , P ). A linear operator T : (S1,P1) → (S2,P2) is
called an a.s. bounded random linear operator of type I if for each Q2 ∈ F(P2),
there exist some ξ ∈ L0

+(F) and Q1 ∈ F(P1) such that

‖Tx‖Q2 ≤ ξ · ‖x‖Q1 , ∀x ∈ S1,

where F(P1) and F(P2) denote the sets of finite subfamilies of P1 and P2,
respectively.

In this paper we distinguish random variables from their equivalence classes
by means of symbols: for example, IA denotes the characteristic function of
the F -measurable set A, then we use ĨA for its equivalence class. Further,
let A = {ω ∈ Ω | ξ0(ω) > η0(ω)}, where ξ0 and η0 are arbitrarily chosen
representatives of ξ and η in L0(F , R), respectively, then we always use [ξ >

η] for the equivalence class of A and often write I[ξ>η] for ĨA, one can also
understand such notations as I[ξ≤η], I[ξ 6=η] and I[ξ=η]. Besides, for any ξ ∈

L0(F ,K), ξ−1 stands for the equivalence class of the F -measurable function
(ξ0)−1 : Ω → K defined by

(ξ0)−1(ω) =

{

(ξ0(ω))−1, if ξ0(ω) 6= 0;
0, otherwise,

where ξ0 is an arbitrarily chosen representative of ξ. It is clear that ξ · ξ−1 =
I[|ξ|>0].



940 XIA ZHANG

Similar to the proof of [15, Lemma 2.1] and [4, Theorem 2.4], one can obtain
Proposition 3.2 below, which will be used in the proof of Lemma 3.2 in this
paper.

Proposition 3.2. Let (S1,P1) and (S2,P2) be two random locally convex

modules over K with base (Ω,F , P ). If T : (S1,P1) → (S2,P2) is an a.s.

bounded random linear operator of type I, then T is a module homomorphism.

Lemma 3.2. Let (S1,P1) and (S2,P2) be two random locally convex modules

over K with base (Ω,F , P ). Then T ∈ B(S1
c , S

2
c ) if and only if T is an a.s.

bounded random linear operator of type I from (S1,P1) to (S2,P2).

Proof. Sufficiency. It is clear according to Proposition 3.2.
Necessity. Let T be a continuous module homomorphism from (S1, T 1

c ) to
(S2, T 2

c ), then Tθ = θ. For each Q2 ∈ F(P2), let

Nθ(Q
2, 1) = {x ∈ S2 | ‖x‖Q2 ≤ 1},

then Nθ(Q
2, 1) is a neighborhood of θ in (S2, T 2

c ). Since T is continuous,
for each Q2 ∈ F(P2), it follows that there exists a neighborhood U of θ in
(S1, T 1

c ) such that Tx ∈ Nθ(Q
2, 1) for any x ∈ U . Moreover, there exist some

Q1 ∈ F(P1) and ε ∈ L0
++(F) such that Nθ(Q

1, ε) ⊂ U .
For any x ∈ S1, then ‖x‖Q1 ∈ L0

+(F). In the following we will divide the
proof into two parts.

Case I: If P [‖x‖Q1 = 0] = 0, namely ‖x‖Q1 ∈ L0
++(F), take x1 = ε

2‖x‖
Q1

x,

then

‖x1‖Q1 =
ε

2‖x‖Q1

· ‖x‖Q1 ≤ ε,

namely x1 ∈ Nθ(Q
1, ε) ⊂ U , thus Tx1 ∈ Nθ(Q

2, 1). Since it is easy to see that

x =
2‖x‖

Q1

ε
x1, it follows that

‖Tx‖Q2 = ‖
2‖x‖Q1

ε
Tx1‖Q2 =

2

ε
· ‖x‖Q1 · ‖Tx1‖Q2 ≤

2

ε
· ‖x‖Q1 .

Let ξ = 2
ε
∈ L0

++(F). Then

‖Tx‖Q2 ≤ ξ · ‖x‖Q1 .

Case II: If P [‖x‖Q1 = 0] > 0, let D = [‖x‖Q1 = 0], then D ∈ F and
P (D) > 0. Now let us consider the restraint ID ·‖·‖Q1 of ‖·‖Q1 ontoD. For any
λ ∈ L0

++(F), then ID ·‖λx‖Q1 = λID ·‖x‖Q1 = 0, thus ID ·λx ∈ Nθ(Q
1, ε) ⊂ U .

Hence ID · λTx = T (ID · λx) ∈ Nθ(Q
2, 1), namely,

‖ID · λTx‖Q2 = ID · λ‖Tx‖Q2 ≤ 1.

Consequently,

λ0(ω)‖Tx‖0Q2(ω) ≤ 1, ∀ω ∈ D,(3.2)

where λ0 and ‖Tx‖0Q2 are arbitrary chosen representatives of λ and ‖Tx‖Q2 ,
respectively. Since λ is arbitrary, we can assert that ID · ‖Tx‖Q2 = 0. In
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fact, if not, there exists some D
′

∈ F , D
′

⊂ D and P (D
′

) > 0 such that
ID′ · ‖Tx‖Q2 + I(D′ )c ∈ L0

++(F), let

λ = ID′ ·
2

‖Tx‖Q2

+ I(D′ )c ,

then λ ∈ L0
++ and

λ0(ω)‖Tx‖0Q2(ω) = 2, ∀ω ∈ D
′

⊂ D,

which is contradict to the inequality (3.2). Thus ID · ‖Tx‖Q2 = 0.
Since D = [‖x‖Q1 = 0], we have ‖IDc ·x‖Q1 + ID ∈ L0

++(F). Thus it follows
from the condition of Case I that there exists some ξ ∈ L0

++(F) such that

‖T (IDc · x)‖Q2 ≤ ξ · ‖IDc · x‖Q1 .

Consequently,

‖Tx‖Q2 = ‖ID · Tx+ IDc · Tx‖Q2

≤ ‖ID · Tx‖Q2 + ‖IDc · Tx‖Q2

= ‖IDc · Tx‖Q2

≤ ξ · ‖IDc · x‖Q1

≤ ξ · ‖x‖Q1 ,(3.3)

which says that T is an a.s. bounded random linear operator of type I.
This completes the proof. �

Remark 3.1. Guo gave a characterization of each element in (Sc)
∗ by a concise

way of thinking in [8], following this idea, one can also give a proof for the
necessity of Lemma 3.2, please refer to [8, page 3032].

Before giving the proof of Theorem 1.5, let us recall the notion of a.s.
bounded random linear operator of type II from (S1,P1) to (S2,P2) and a
characterization of each element in B(S1

ε,λ, S
2
ε,λ).

Definition 3.2 ([15]). Let (S1,P1) and (S2,P2) be two random locally convex
modules over K with base (Ω,F , P ). A linear operator T : (S1,P1) → (S2,P2)
is called a.s. bounded random linear operator of type II if for each Q2 ∈ F(P2),
there exist a countable partition {An, n ∈ N} of Ω to F , a sequence {ξn, n ∈
N} in L0

+(F) and a countable subset {Q1
n, n ∈ N} in F(P1) such that

‖Tx‖Q2 ≤
∞
∑

n=1

ĨAn
· ξn · ‖x‖Q1

n

, ∀ x ∈ S1,

where F(P1) and F(P2) are the same as in Definition 3.1.

Proposition 3.3 ([15]). Let (S1,P1) and (S2,P2) be two random locally con-

vex modules over K with base (Ω,F , P ). Then T ∈ B(S1
ε,λ, S

2
ε,λ) if and only if

T : (S1,P1) → (S2,P2) is an a.s. bounded random linear operator of type II.
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We can now prove Theorem 1.5.

Proof of Theorem 1.5. If T ∈ B(S1
ε,λ, S

2
ε,λ), then it follows from Proposition 3.3

that for each Q2 ∈ F(P2), there exist a countable partition {An, n ∈ N} of Ω
to F , a sequence {ξn, n ∈ N} in L0

+(F) and a countable subset {Q1
n, n ∈ N}

in F(P1) such that

‖Tx‖Q2 ≤

∞
∑

n=1

ĨAn
· ξn · ‖x‖Q1

n

, ∀x ∈ S1.(3.4)

Let ξ =
∑∞

n=1 ĨAn
· ξn, then ξ ∈ L0

+(F). Since P1 has the countable con-
catenation property, it follows that there exists a Q1 ∈ F(P1) such that

‖x‖Q1 =
∑∞

n=1 ĨAn
· ‖x‖Q1

n

for any x ∈ S1. Thus the inequality (3.4) yields
that

‖Tx‖Q2 ≤ ξ · ‖x‖Q1 , ∀x ∈ S1,(3.5)

which shows that T ∈ B(S1
c , S

2
c ) according to Lemma 3.2.

This completes the proof. �

Now we give Example 3.1 below, which shows that it is necessary to require
that P1 have the countable concatenation property in Theorem 1.5.

Example 3.1. Let Ω = [0, 1), F = the σ-algebra generated by the sets An :=
[1− 2−(n−1), 1− 2−n] for each n ∈ N and P = the Lebesgue measure on [0, 1).
Then clearly (Ω,F , P ) is a probability space. Let S = L0(F , R) and | · | = the
ordinary L0-norm on S. For each n ∈ N , define the mapping | · |n : S → L0

+(F)
by

|x|n = ĨAn
· |x|, ∀x ∈ S,

then each | · |n is an L0-seminorm on S. Let P1 = {| · |n | n ∈ N}, then it is
easy to see that

| · | =

∞
∑

n=1

| · |n /∈ P1,

that is to say, (S,P1) is a random locally convex module over R with base
(Ω,F , P ) but P1 does not have the countable concatenation property. Let
P2 = P1∪{| · |}, then P2 has the countable concatenation property and (S,P2)
is exactly the random normed module (L0(F , R), | · |). Define the mapping
T : (S,P1) → (S,P2) by

Tx =

∞
∑

n=1

ĨAn
· ξn · x, ∀x ∈ S,

where ξn ∈ L0
++(F), then T is a module homomorphism, and T ∈ B(S1

ε,λ, S
2
ε,λ)

but T /∈ B(S1
c , S

2
c ). In fact, take ξ =

∑∞
i=1 ĨAn

· ξn, ε ∈ L0
++(F), and observe

that

T−1{y ∈ S | |y| ≤ ε} = {x ∈ S | |ξ−1 · x| ≤ ε}
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then it is easy to see that T−1{y ∈ S | |y| ≤ ε} is a neighborhood of θ ∈ S in
the (ε, λ)-topology induced by P2, however, it is not a neighborhood of θ ∈ S
in the locally L0-convex topology induced by P1 since | · | /∈ P1.

3.3. The relation between B(S1

ε,λ, S
2

ε,λ) and B(S1

c , S
2

ε,λ)

From the proof of Theorem 1.2 in [13], we can easily obtain Lemma 3.3
below, which plays an important role in the proof of Theorem 1.6.

Lemma 3.3. Let (S1,P1) be a random locally convex module over K with

base (Ω,F , P ) and f a mapping from S1 to L0
+(F) such that f(ξ ·x) = ξ · f(x)

and f(x + y) ≤ f(x) + f(y), ∀ξ ∈ L0
+(F) and x, y ∈ S1. If f : (S1, T 1

c ) →

(L0(F ,K), Tε,λ) is continuous, then there exist a countable partition {An, n ∈
N} of Ω to F , a sequence {ξn, n ∈ N} in L0

+(F) and a countable subset

{Q1
n, n ∈ N} in F(P1) such that

f(x) ≤
∞
∑

n=1

ĨAn
· ξn · ‖x‖Q1

n

, ∀x ∈ S1.

We can now give the proof of Theorem 1.6.

Proof of Theorem 1.6. For each Q2 ∈ F(P2), define the mapping fQ2 : S1 →
L0
+(F) by

fQ2(x) = ‖Tx‖Q2, ∀x ∈ S1,

then fQ2(ξ ·x) = ξ · fQ2(x) and fQ2(x+ y) ≤ fQ2(x)+ fQ2(y), ∀ξ ∈ L0
+(F) and

x, y ∈ S1. If T ∈ B(S1
c , S

2
ε,λ), then it is easy to see that fQ2 is a continuous

mapping from (S1, T 1
c ) to (L0(F ,K), Tε,λ). Thus it follows from Lemma 3.3

that there exist a countable partition {An, n ∈ N} of Ω to F , a sequence
{ξn, n ∈ N} in L0

+(F) and a countable subset {Q1
n, n ∈ N} in F(P1) such

that

‖Tx‖Q2 = fQ2(x) ≤

∞
∑

n=1

ĨAn
· ξn · ‖x‖Q1

n

, ∀x ∈ S1.

Since T is random linear, it follows from Proposition 3.3 that T ∈ B(S1
ε,λ, S

2
ε,λ).

Conversely, it is clear. �
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