DOI QR코드

DOI QR Code

Atomic Layer Deposition: Overview and Applications

원자층증착 기술: 개요 및 응용분야

  • Shin, Seokyoon (Division of Materials Science and Engineering, Hanyang University) ;
  • Ham, Giyul (Division of Materials Science and Engineering, Hanyang University) ;
  • Jeon, Heeyoung (Department of Nano-scale Semiconductor Engineering, Hanyang University) ;
  • Park, Jingyu (Department of Nano-scale Semiconductor Engineering, Hanyang University) ;
  • Jang, Woochool (Division of Materials Science and Engineering, Hanyang University) ;
  • Jeon, Hyeongtag (Division of Materials Science and Engineering, Hanyang University)
  • 신석윤 (한양대학교 신소재공학과) ;
  • 함기열 (한양대학교 신소재공학과) ;
  • 전희영 (한양대학교 나노반도체공학과) ;
  • 박진규 (한양대학교 나노반도체공학과) ;
  • 장우출 (한양대학교 신소재공학과) ;
  • 전형탁 (한양대학교 신소재공학과)
  • Received : 2013.07.13
  • Accepted : 2013.08.07
  • Published : 2013.08.27

Abstract

Atomic layer deposition(ALD) is a promising deposition method and has been studied and used in many different areas, such as displays, semiconductors, batteries, and solar cells. This method, which is based on a self-limiting growth mechanism, facilitates precise control of film thickness at an atomic level and enables deposition on large and three dimensionally complex surfaces. For instance, ALD technology is very useful for 3D and high aspect ratio structures such as dynamic random access memory(DRAM) and other non-volatile memories(NVMs). In addition, a variety of materials can be deposited using ALD, oxides, nitrides, sulfides, metals, and so on. In conventional ALD, the source and reactant are pulsed into the reaction chamber alternately, one at a time, separated by purging or evacuation periods. Thermal ALD and metal organic ALD are also used, but these have their own advantages and disadvantages. Furthermore, plasma-enhanced ALD has come into the spotlight because it has more freedom in processing conditions; it uses highly reactive radicals and ions and for a wider range of material properties than the conventional thermal ALD, which uses $H_2O$ and $O_3$ as an oxygen reactant. However, the throughput is still a challenge for a current time divided ALD system. Therefore, a new concept of ALD, fast ALD or spatial ALD, which separate half-reactions spatially, has been extensively under development. In this paper, we reviewed these various kinds of ALD equipment, possible materials using ALD, and recent ALD research applications mainly focused on materials required in microelectronics.

Keywords

References

  1. T. Suntola, Thin Solid Films, 216, 84 (1992). https://doi.org/10.1016/0040-6090(92)90874-B
  2. T. Suntola, Mater. Sci. Rep., 4, 261 (1989). https://doi.org/10.1016/S0920-2307(89)80006-4
  3. M. A. Tischler and S. M. Bedair, Appl. Phys. Lett., 49, 274 (1986). https://doi.org/10.1063/1.97139
  4. B. T. McDermott, N. A. El-Masry, M. A. Tischler and S. M. Bedair, Appl. Phys. Lett., 51, 1830 (1987). https://doi.org/10.1063/1.98484
  5. Y. Horikoshi, M. Kawashima and H. Yamaguchi, Appl. Phys. Lett., 50, 1686 (1987). https://doi.org/10.1063/1.97768
  6. D. H. Triyoso, R. I. Hedge, J. Grant, P. Fejes, R. Liu, D. Roan, M. Ramon, D. Werho, R. Rai, B. La, J. Baker, C. Garza, T. Gurnther, B. E. White and P. J. Tobin, J. Vac. Sci. Technol. B, 22, 2121 (2004). https://doi.org/10.1116/1.1773840
  7. G. H. Lee, K. R. Kim, H. J. Yang, S. K. Park, G. S. Cho, E. S. Choi and Y. H. Song, Jpn. J. Appl. Phys., 51, 116501 (2012). https://doi.org/10.1143/JJAP.51.116501
  8. P. Poodt, D. C. Cameron, E. Dickey, S. M. George, V. Kuznetsov, G. N. Parsons, F. Roozeboom, G. Sundram and A. Vermeer, J. Vac. Sci. Technol. A, 30, 010802 (2012). https://doi.org/10.1116/1.3670745
  9. M. Leskela and M. Ritala, Angew. Chem. Int. Ed., 42, 5548 (2003). https://doi.org/10.1002/anie.200301652
  10. H. Kim, Thin Solid Films, 519, 6639 (2011). https://doi.org/10.1016/j.tsf.2011.01.404
  11. B. H. Kim, W.S. Jeon, S. H. Jung and B. T. Ahn, Electrochem. Solid-State Lett., 8, G294 (2005). https://doi.org/10.1149/1.2035699
  12. J. Y. Kim, D. Y. Kim, H. O. Park and H, Jeon, J. Electrochem. Soc., 151, G29 (2005).
  13. H. C. M. Knoops, A. J. M. Mackus, M. E. Donders, M. C. van de Sanden, P. H. L. Notten and W. M. M. Kessels, Electrochem. Solid-State Lett., 12, G34 (2009). https://doi.org/10.1149/1.3125876
  14. X. Liu, S. Ramanathan, A. Longdergan, A. Srivastava, E. Lee, T. E. Seidel, J. T. Barton, D. Pand and R. G. Gordon, J. Electrochem. Soc., 152, G213 (2005). https://doi.org/10.1149/1.1859631
  15. D. Ma, S. Park, B. S. Seo, S. Choi, N. Lee and J. H. Lee, J. Vac. Sci. Technol. B, 23, 80 (2005). https://doi.org/10.1116/1.1829060
  16. M. Nieminen, M. Putkonen and L. Niinisto, Appl. Surf. Sci., 174, 155 (2001). https://doi.org/10.1016/S0169-4332(01)00149-0
  17. J. Kostamo, V. Saanila, M. Tuominen, S. Haukka, K.-E. Elers, M. Soininen, W. M. Li, M. Leinikka, S. Kaipio and H. Huotari, Paper presented at AVS Topical Conference on Atomic Layer Deposition 2002, Aug 19-21, 2002.
  18. M. Leskela and M. Ritala, J. Phys. IV, 5, 937 (1995).
  19. L. Niinisto, M. Ritala and M. Leskela, Mater. Sci. Eng. B, 41, 23 (1996). https://doi.org/10.1016/S0921-5107(96)01617-0
  20. S. M. George, A. W. Ott and J. W. Klaus, J. Phys. Chem., 100, 13121, (1996). https://doi.org/10.1021/jp9536763
  21. A. W. Ott, J. M. Johnson, J. W. Klaus and S. M. George, Appl. Surf. Sci., 112, 205 (1997). https://doi.org/10.1016/S0169-4332(96)00977-4
  22. A. W. Ott, Klaus, J. W. Klaus, J. M. Johnson and S. M. George, Thin Solid Films, 292, 135 (1997). https://doi.org/10.1016/S0040-6090(96)08934-1
  23. M. Ritala, T. Asikainen and M. Leskela, Electrochem. Solid-State Lett., 1, 156 (1998).
  24. M. Lindblad, S. Haukka, A. Kytokivi, E. Lakomaa, A. Rautiainen and T. Suntola, Appl. Surf. Sci., 121/122, 286 (1997). https://doi.org/10.1016/S0169-4332(97)00307-3
  25. S. Haukka, E. Lakomaa and A. Root., J. Phys. Chem., 97, 5085 (1993). https://doi.org/10.1021/j100121a040
  26. S. Haukka, E. Lakomaa, O. Jylha, J. Vilhunen and S. Hornytzkyj, Langmuir, 9, 3497 (1993). https://doi.org/10.1021/la00036a026
  27. A. Kytokivi, E. Lakomaa, A. Root, H. Osterholm, J. Jacobs and H. H. Brongersma, Langmuir, 13, 2717 (1997). https://doi.org/10.1021/la961085d
  28. R. Matero, Thin Solid Films, 368, 1 (2000). https://doi.org/10.1016/S0040-6090(00)00890-7
  29. M. D. Groner, F. H. Fabreguette, J. W. Elam and S. M. George, Chem. Mater., 16, 639 (2004). https://doi.org/10.1021/cm0304546
  30. J. D. Ferguson,,A. W. Weimer and S. M. George, J. Vac. Sci. Technol. A, 23, 118 (2005). https://doi.org/10.1116/1.1821585
  31. A. Yamada, B. S. Sang and M. Konagai, Appl. Surf. Sci., 112, 216 (1997). https://doi.org/10.1016/S0169-4332(96)01022-7
  32. A. W. Ott and R. P. H. Chang, Mater. Chem. Phys., 58, 132 (1999). https://doi.org/10.1016/S0254-0584(98)00264-8
  33. E. B. Yousfi, J. Fouache and D. Lincot, Appl. Surf. Sci., 153, 223 (2000). https://doi.org/10.1016/S0169-4332(99)00330-X
  34. A. Kowalik, E. Guziewicz, K. Kopalko, S. Yatsunenko, A. Wójcik-G odowska, M. Godlewski, P. D u ewski, E. usakowska and W. Paszkowicz, J. Cryst. Growth, 311, 1096 (2009). https://doi.org/10.1016/j.jcrysgro.2008.11.086
  35. R. J. Roy, Solid State Chem., 111, 11 (1994). https://doi.org/10.1006/jssc.1994.1192
  36. J. W. Elam, M. Schuisky, J. D. Ferguson and S. M. George, Thin Solid Films, 436, 145 (2003). https://doi.org/10.1016/S0040-6090(03)00533-9
  37. H. Tiznado, M. Bouman, B. C. Kang, K. Lee and F. Zaera, J. Mol. Catal. A: Chem., 281, 35 (2008). https://doi.org/10.1016/j.molcata.2007.06.010
  38. P. Caubet, J. P. Gonchond, M. Juhel, P. Bouvet, M. Gros- Jean, J. Michailos, C. Richard and B. Iteprat, J. Electrochem. Soc., 155, H625 (2008). https://doi.org/10.1149/1.2940306
  39. S. Consiglio, W. X. Zeng, N. Berliner and E. T. Eisenbraun, J. Electrochem. Soc., 155, H196 (2008). https://doi.org/10.1149/1.2827995
  40. H. Kim, J. Vac. Sci. Technol. B, 21, 2231 (2003). https://doi.org/10.1116/1.1622676
  41. M. Ritala, P. Kalsi, D. Riihela, K. Kukli, M. Leskela and J. Jokinen, Chem. Mater., 11, 1712 (1999). https://doi.org/10.1021/cm980760x
  42. M. Leskelä and M. Ritala, J. Phys. IV, 9, 837 (1999).
  43. J. S. Park, M. J. Lee, C. S. Lee and S. W. Kang, Electrochem. Solid-State Lett., 4, C17 (2001). https://doi.org/10.1149/1.1353160
  44. H. B. Profijt, S. E. Potts, M. C. M. van de Sanden and W. M. M. Kessels, J. Vac. Sci. Technol. A, 29, 050801 (2011).
  45. M. Hiltunen, M. Leskela, L. Makela, E. Niinisto, E. Nykanen and P. Soininen, Thin Solid Films, 166, 149 (1988). https://doi.org/10.1016/0040-6090(88)90375-6
  46. H. Jeon, J. W. Lee, Y. D. Kim, D. S. Kim and K. S. Yi, J. Vac. Sci. Technol. A, 18, 1595 (2000). https://doi.org/10.1116/1.582391
  47. C. H. Ahn, S. G. Cho, H. J. Lee, K. H. Park and S. H. Jeong, Met. Mater. Int., 7, 621 (2001). https://doi.org/10.1007/BF03179261
  48. J. Uhm and H. Jeon, Jpn. J. Appl. Phys., 40, 4657 (2001). https://doi.org/10.1143/JJAP.40.4657
  49. K. Choi, P. Lysaght, H. Alshareef, C. Huffman, H. C. Wen, R. Harris, H. Luan, P. Y. Hung, C. Sparks, M. Cruz, K. Matthews, P. Majhi and B. H. Lee, Thin Solid Films, 486, 141 (2005). https://doi.org/10.1016/j.tsf.2004.11.239
  50. H. E. Cheng, W. J. Lee and C. M. Hsu, Thin Solid Films, 485, 59 (2005). https://doi.org/10.1016/j.tsf.2005.03.049
  51. M. Ritala, M. Leskelä, E. Rauhala and P. Haussalo, J. Electrochem. Soc., 142, 2731 (1995). https://doi.org/10.1149/1.2050083
  52. M. Ritala, T. Asikainen, M. Leskela, J. Jokinen, R. Lappalainen, M. Utriainen, L. Niinisto and E. Ristolainen, Appl. Surf. Sci., 120, 199 (1997). https://doi.org/10.1016/S0169-4332(97)00387-5
  53. M. Bosund, A. Aierken, J. Tiilikainen, T. Hakkarainen and H. Lipsanen, Appl. Surf. Sci., 254, 5385 (2008). https://doi.org/10.1016/j.apsusc.2008.02.070
  54. M. Juppo, M. Ritala and M. Leskela, J. Electrochem. Soc., 147, 3377 (2000). https://doi.org/10.1149/1.1393909
  55. M. Juppo, P. Alen, M. Ritala, T. Sajavaara, J. Keinonen and M. Leskelä, Electrochem. Solid-State Lett., 5, C4 (2002). https://doi.org/10.1149/1.1420925
  56. J. S. Park and S. W. Kang, Electrochem. Solid-State Lett., 7, C87 (2004). https://doi.org/10.1149/1.1764413
  57. S. B. S. Heil, E. Langereis, F. Roozeboom, M. C. M. van de Sanden and W. M. M. Kessels, J. Electrochem. Soc., 153, G956 (2006). https://doi.org/10.1149/1.2344843
  58. J. S. Park, S. W. Kang and H. Kim, J. Vac. Sci. Technol., B, 24, 1327 (2006).
  59. S. B. S. Heil, J. L. van Hemmen, C. J. Hodson, N. Singh, J. H. Klootwijk, F. Roozeboom, M. C. M. van de Sanden and W. M. M. Kessels, J. Vac. Sci. Technol. A, 25, 1357 (2007). https://doi.org/10.1116/1.2753846
  60. K. E. Elers, V. Saanila, P. J. Soininen, J. T. Kostamo, S. Haukka, J. Juhanoja and W. F. A. Besling, Chem. Vap. Deposition, 8, 149 (2002). https://doi.org/10.1002/1521-3862(20020704)8:4<149::AID-CVDE149>3.0.CO;2-F
  61. J. H. Yun, E. S. Choi, C. M. Jang and C. S. Lee, Jpn. J. Appl. Phys. Part 2, 41, L418 (2002). https://doi.org/10.1143/JJAP.41.L418
  62. H. K. Kim, J. Y. Kim, J. Y. Park, Y. Kim, Y. D. Kim, H. Jeon and W. M. Kim, J. Korean Phys. Soc., 41, 739 (2002).
  63. F. Fillot, T. Morel, S. Minoret, I. Matko, S. Maitrejean, B. Guillaumot, B. Chenevier and T. Billon, Microelectron. Eng., 82, 248 (2005). https://doi.org/10.1016/j.mee.2005.07.083
  64. J. S. Min, Y. W. Son, W. G. Kang, S. S. Chun and S. W. Kang, Jpn. J.Appl. Phys., 37, 4999 (1998). https://doi.org/10.1143/JJAP.37.4999
  65. J. W. Elam, M. Schuisky, J. D. Ferguson and S. M. George, Thin Solid Films, 436, 145 (2003). https://doi.org/10.1016/S0040-6090(03)00533-9
  66. K. E. Elers, J. Winkler, K. Weeks and S. Marcus, J. Electrochem. Soc., 152, G589 (2005). https://doi.org/10.1149/1.1938108
  67. J. W. Klaus, S. J. Ferro and S. M. George, Thin Solid Films, 360, 145 (2000). https://doi.org/10.1016/S0040-6090(99)01076-7
  68. HSC Chemistry, 5.11 edition; Outokumpu Research Oy : Pori, Finland. Values are given at $0^{\circ}C$.
  69. R. K. Grubbs, N. J. Steinmetz and S. M. George, J. Vac. Sci. Technol., B, 22, 1811 (2004). https://doi.org/10.1116/1.1767105
  70. F. H. Fabreguette, Z. A. Sechrist, J. W. Elam and S. M. George, Thin Solid Films, 488, 103 (2005). https://doi.org/10.1016/j.tsf.2005.04.114
  71. J. W. Elam, C. E. Nelson, R. K. Grubbs and S. M. George, Appl. Surf. Sci., 479, 121 (2001). https://doi.org/10.1016/S0039-6028(01)00969-4
  72. T. Luoh, C. T. Su, T. H. Yang, K. C. Chem and C. Y. Lu, Microelectron. Eng., 85, 1739 (2008). https://doi.org/10.1016/j.mee.2008.04.030
  73. S. D. Elliott, Langmuir, 26, 9179 (2010). https://doi.org/10.1021/la101207y
  74. T. Y. Park, J. S. Lee, J. G. Park, H. Y. Jeon and H. Jeon, J. Vac. Sci. Technol. A, 30, 01A139 (2012). https://doi.org/10.1116/1.3666033
  75. H. T. Wang, R. G. Gordon, R. Alvis and R. M. Ulfig, Chem. Vap. Deposition, 15, 312 (2009).
  76. T. Aaltonen, M. Ritala, T. Sajavaara, J. Keinonen and M. Leskeaä, Chem. Mater., 15, 1924 (2003). https://doi.org/10.1021/cm021333t
  77. J. Hamalainen, F. Munnik, M. Ritala and M. Leskelä, Chem. Mater., 20, 6840 (2008). https://doi.org/10.1021/cm801187t
  78. T. Aaltonen, M. Ritala and M. Leskela, Electrochem. Solid-State Lett., 8, C99 (2005).. https://doi.org/10.1149/1.1940507
  79. T. Aaltonen, M. Ritala, V. Sammelselg and M. Leskela, J. Electrochem. Soc., 151, G489 (2004). https://doi.org/10.1149/1.1761011
  80. T. Aaltonen, A. Rahtu, M. Ritala and M. Leskela, Electrochem. Solid-State Lett., 6, C130 (2003). https://doi.org/10.1149/1.1595312
  81. K. J. Park, D. B. Terry, S. M. Stewart and G. N. Parsons, Langmuir, 23, 6106 (2007). https://doi.org/10.1021/la061898u
  82. K. Knapas and M. Ritala, Chem. Mater., 20, 5698 (2008). https://doi.org/10.1021/cm800460b
  83. B. S. Lim, A. Rahtu and R. G. Gordon, Nat. Mater., 2, 749 (2003). https://doi.org/10.1038/nmat1000
  84. R. Solanki and B. Pathangey, Electrochem. Solid-State Lett., 3, 479 (2000).
  85. T. Y. Park, J. S. Lee, J. G. Park, H. Y. Jeon, H. Jeon, J. Vac. Sci. Technol. A, 30, 01A139 (2012). https://doi.org/10.1116/1.3666033
  86. H. J. Kim, Micro. Eng. 106, 69 (2013). https://doi.org/10.1016/j.mee.2013.01.016
  87. J. W. Elam, A. Zinovev, C. Y. Han, H. H. Wang, U. Welp, J. N. Hyrn and M. J. Pellin, Thin Solid Films, 515, 1664 (2006). https://doi.org/10.1016/j.tsf.2006.05.049
  88. H. Liu, K. Xu, X. Zhang and P. D. Ye, Appl. Phys. Lett. 100, 152115 (2012). https://doi.org/10.1063/1.3703595
  89. A. B. F. Martinson, S. C. Riha, E. Thimsen, J. W. Elam and M. J. Pellin, Energy Environ. Sci., 6, 1868 (2013). https://doi.org/10.1039/c3ee40371h
  90. A. Short, L. Jewell, S. Doshay, C. Church, T. Keiber, F. Bridges, S. Carter and G. Alers, J. Vac. Sci. Technol. A, 31, 01A138 (2013). https://doi.org/10.1116/1.4769862
  91. J. Y. Kim and S. M. George, J. Phys. Chem. C, 114, 17597 (2010). https://doi.org/10.1021/jp9120244
  92. S. K. Sarkar, J. Y. Kim, D. N. Goldstein, N. R. Neale, K. Zhu, C. M. Elliott, A. J. Frank and S. M. George, J. Phys. Chem. C, 114, 8032 (2010). https://doi.org/10.1021/jp9086943
  93. H. Wedemeyer, J. Michels, R. Chmielowski, S. Bourdais, T. Muto, M. Sugiura, G. Dennler and J. Bachmann, Energy Environ. Sci., 6, 67 (2013). https://doi.org/10.1039/c2ee23205g
  94. V. Pore, M. Ritala and M. Leskela, Chem. Vap. Deposition, 13, 163 (2007). https://doi.org/10.1002/cvde.200606530
  95. W. S. Choi, J. Korean Phys. Soc., 57, 1472 (2010). https://doi.org/10.3938/jkps.57.1472
  96. Y. H. Shin and Y. Kim, J. Korean Phys. Soc., 61, 594 (2012). https://doi.org/10.3938/jkps.61.594
  97. S. Jeon, S. Bang, S. Lee, S. Kwon, W. Jeong and H. Jeon, J. Korean Phys. Soc., 53, 3287 (2008). https://doi.org/10.3938/jkps.53.3287
  98. Z. Y. Ye, H. L. Lu, Y. G. Gu, Z. Y. Xie, Y. Zhang, Q. Q. Sun, S. J. Ding and D. W. Zhang, Nanoscale Res. Lett., 9, 108 (2013).
  99. R. G. Gordon, D. Hausmann, E. Kim and J. Sherpard, Chem. Vap. Dep., 9, 73 (2003). https://doi.org/10.1002/cvde.200390005
  100. S. C. Witczak, M. Gaitan, J. S. Suehle, M. C. Peckerar, D. I. Ma, Solid-State Electron., 37, 10, (1994).
  101. J. W. Lim, S. J. Yun and J. H. Lee, Electrochem Solid- State Lett., 73, F73 (2004).
  102. S. K. Kim, W. D. Kim, K. M. Kim and C. S. Hwang, Appl. Phys. Lett., 85, 4112 (2004). https://doi.org/10.1063/1.1812832
  103. R. Rios and N. D. Arora, Tech. Dig. Int. Electron Devices Meet., 613 (1994).
  104. M. Cao, P. V. Voorde, M. Cos and W. Green, IEEE Electron Device Lett., 19, 291 (1998). https://doi.org/10.1109/55.704403
  105. J. Robertson, J. Vac. Sci. Technol., B, 18, 1785 (2000). https://doi.org/10.1116/1.591472
  106. K. J. Hubbard and D. G. Schlom, J. Mater. Res., 11, 2757 (1996). https://doi.org/10.1557/JMR.1996.0350
  107. J. H. Koo, S. H. Kim, S. M. Jeon, H. Jeon, J. Korean Phys. Soc., 48, 1(2006).
  108. H. C. Kim, S. H. Woo, J. S. Lee, H. G. Kim, Y. C. Kim, H. R. Lee, and H. Jeon, J. Electrochem. Soc., 157(4), H479 (2010). https://doi.org/10.1149/1.3301665
  109. S. H. Kim, S. H. Woo, H. S. Hong, H. C. Kim, H. Jeon, and C. H. Bae, J. Electrochem. Soc., 154(2), H97 (2007). https://doi.org/10.1149/1.2401033
  110. J. H. Lee, J. H. Koo, H. S. Sim, and H. Jeon, J. Korean Phys. Soc., 44, 4 (2004).
  111. S. K. Kim, S. W. Lee, J. H. Han, B. R. Lee, S. W. Han, and C. S. Hwang, Adv. Funct. Mater., 20, 2989 (2010). https://doi.org/10.1002/adfm.201000599
  112. S. W. Lee, J. H. Han, S. R. Han, W. G. Lee, J. H. Jang, M. H. Se, S. K. Kim, C. Dussarrat, J. Gatineau, Y. S. Min, and C. S. Hwang, Chem. Mat., 23, 2227 (2011). https://doi.org/10.1021/cm2002572
  113. K. H. Ahn, S. G. Baik, and S. S. Kim, J. Appl. Phys., 92, 2651 (2002). https://doi.org/10.1063/1.1495526
  114. R. Bez, E. Camerlenghi, A. Modelli and A. Visconti, Proc. IEEE, 91, 489 (2003). https://doi.org/10.1109/JPROC.2003.811702
  115. F. Irrera, I. Piccoli, G. Puzzilli, M. Rossini and T. Vali, Microelectron. Reliab., 49, 135 (2009). https://doi.org/10.1016/j.microrel.2008.11.006
  116. J. D. Lee, S. H. Hur and J. D. Choi, IEEE Electron Device Lett., 23, 264 (2002). https://doi.org/10.1109/55.998871
  117. G. Atwood, IEEE Trans. Device Mater. Reliab., 4, 301 (2004). https://doi.org/10.1109/TDMR.2004.837117
  118. G. Van den Bosch, G. S. Kar, P. Blomme, A. Arreghini, A. Cacciato, L. Breuil, A. De Keersgieter, V. Paraschiv, C. Vrancken, B. Douhard, O. Richard, S. Van Aerde, I. Debusschere, and J. Van Houdt, IEEE Electron Device Lett., 32, 1501 (2011). https://doi.org/10.1109/LED.2011.2164775
  119. S. Yokoyama, Y. Nakashima and K. Ooba, J. Korean Phys. Soc., 35, S71 (1999).
  120. I. G. Baek, C. J. Park, H. Ju, D. J. Seong, H. S. Ahn, J. H. Kim, M. K. Yang, S. H. Song, E. M. Kim, S. O. Park, C. H. Park, C. W. Song, G. T. Jeong, S. Choi, H. K. Kang and C. Chung, IEEE Int. Electron Devices Meet., 31, 737 (2011).
  121. Y. Lu, B. Gao, Y. Fu, B. Chen, L. Liu, X. Liu and J. Kang, IEEE Electron Device Lett., 33, 306 (2012). https://doi.org/10.1109/LED.2011.2178229
  122. Z. Wang, W. G. Zhu, A. Y. Du, L. Wu, Z. Fang, X. A. Tran, W. J. Liu, K. L. Zhang and H. Y. Yu, IEEE Trans. Electron Devices, 59, 1203 (2012). https://doi.org/10.1109/TED.2012.2182770
  123. H. Y. Jeong, Y. I. Kim, J. Y. Lee and S. Y. Choi, Nanotechnology, 120, 115203 (2010).
  124. Y. Y. Chen, G. Pourtois, S. Clima, B. Govoreanu, L. Goux, A. Fantini, R. Degreave, G. Groeseneken, D. Wouters and M. Jurczak, Pac. Rim Int. Conf. Adv. Mater. Process., Proc. Meet., 2806 (2012).
  125. Y. Wu, B. Lee and H. S. P. Wong, Int. Symp. VLSI Technol., Syst., Appl. (VLSI-TSA), Proc. Tech. Pap., 136 (2010).
  126. H. Kondo, M. Arita, T. Fujii, H. Kaji, M. Moniwa, T. Yamaguchi, I. Fujiwara, M. Yoshimaru,and Y. Takahashi, Jpn. J. Appl. Phys., 50, 081101 (2011). https://doi.org/10.1143/JJAP.50.081101
  127. L. Chen, W. Yang, Y. Li, Q. Q. Sun, P. Zhou, H. L. Lu, S. J. Ding and D. W. Zhang, J. Vac. Sci. Technol. A, 30, 01A148 (2012). https://doi.org/10.1116/1.3669516
  128. F. Nardi, S. Balatti, S. Larentis, D. C. Gilmer and D. Ielmini, IEEE Trans. Electron Devices., 60, 70 (2013). https://doi.org/10.1109/TED.2012.2226728
  129. S. Yu, H. Y. Chen, B. Gao, J. Kang and H. S. P. Wong, ACS Nano, 7, 2320 (2013). https://doi.org/10.1021/nn305510u
  130. S. R. Ovshinsky, Phy. Rev. Lett., 21, 1450 (1968). https://doi.org/10.1103/PhysRevLett.21.1450
  131. H. Horii, J. H. Yi, J. H. Park, Y. H. Ha, I. G. Baek, S. O. Park, Y. N. Hwang, S. H. Lee, Y. T. Kim, K. H. Lee, U. I. Chug and J. T. Moon, Symp. VLSI Technol., Dig. Tech. Pap., 177 (2003).
  132. A. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, and R. Bez, IEEE Int. Electron Devices Meet., 29.6.1 (2003).
  133. S. J. Ahn, Y. N. Hwang, Y. J. Song, S. H. Lee, S. Y. Lee, J. H. Park, C. W. Jeong, K. C. Ryoo, J. M. Shin, J. H. Park, Y. Fai, J. H. Oh, G. H. Koh, G. T. Jeong, S. H. Joo, S. H. Choi, Y. H. Son, J. C. Shin, Y. T. Kim, H. S. Jeong and K. Kim, Dig. Tech. Pap. Symp. VLSI Technol., 98 (2005).
  134. S. L. Cho, J. H. Yi, Y. H. Ha, B. J. Kuh, C. M. Lee, J. H. Park, S. D. Nam, H. Horii, B. O. Cho, K. C. Ryoo, S. O. Park, H. S. Kim, U. I. Chung, J. T. Moon and B. I. Ryu, Dig. Tech. Pap. Symp. VLSI Technol., 96 (2005).
  135. A. V. Kolobov, P. Fons, J. Tominaga and S. R. Ovshinsky, Phys. Rev. B, 87, 165206 (2013). https://doi.org/10.1103/PhysRevB.87.165206
  136. F. A. Al-Agel, E. A. Al-Arfaj, F. M. Al-Marzouki, S. A. Khan, Z. H. Khan and A. A. Al-Ghamdi, Mater. Sci. Semicond. Process., 16, 884 (2013). https://doi.org/10.1016/j.mssp.2013.01.014
  137. S. L. Cho, Dig. Tech. Pap. Symp. VLSI Technol., 6B- 1, 96 (2005).
  138. B. J. Choi, S. Choi, Y. C. Shin, C. S. Hwang, J. W. Lee, J. Jeong, Y. J. Kim, S. Y. Hwang and S. K. Hong, J. Electrochem. Soc., 154, H318 (2007). https://doi.org/10.1149/1.2456199
  139. R. Y. Kim, H. G. Kim and S. G. Yoon, Appl. Phys. Lett., 89, 10 (2006).
  140. J. Lee, S. Choi, C. Lee, Y. Kang and D. Kim, Appl. Surf. Sci., 253, 3969 (2007). https://doi.org/10.1016/j.apsusc.2006.08.044
  141. D. J. Milliron, S. Raoux, R. Shelby and J. Jordan-Sweet, Nat. Mater., 6, 352 (2007). https://doi.org/10.1038/nmat1887
  142. V. Venkatasamy, I. Shao, Q. Huang and J. L. Stickney, J. Electrochem. Soc., 155, D693 (2008). https://doi.org/10.1149/1.2969911
  143. I. Shao, Q. Huang, J. L. Stickney and V. Venkatasamy, US Patent 20090011577 (2009).
  144. T. Eom, S. Choi, B. J. Choi, M. H. Lee, T. Gwon, S. H. Rha, W. Lee, M. S. Kim, M. Xiao, I. Buchanan, D. Y. Cho and C. S. Hwang, Chem. Mater., 24, 2099 (2013).

Cited by

  1. Effect of scan speed on moisture barrier properties of aluminum oxide using spatial atomic layer deposition vol.35, pp.2, 2017, https://doi.org/10.1116/1.4976508
  2. films for resistive random-access memory selection devices vol.36, pp.5, 2018, https://doi.org/10.1116/1.5021082
  3. Effect of adding an insulator between metal and semiconductor layers on contact resistance vol.36, pp.3, 2018, https://doi.org/10.1116/1.5020310