DOI QR코드

DOI QR Code

Preparation and Characterization of Biomass-based Polymer Blend Films(2)

Biomass-based 고분자 블렌드 필름의 제조 및 특성 연구(2)

  • Lee, Soo (Department of Chemical Engineering, Changwon National University) ;
  • Park, Myung-Ho (Department of Chemical Engineering, Changwon National University)
  • 이수 (창원대학교 화공시스템공학과) ;
  • 박명호 (창원대학교 화공시스템공학과)
  • Received : 2013.05.24
  • Accepted : 2013.06.29
  • Published : 2013.06.30

Abstract

PLA(polylactic acid), one of biodegradable polymers was blended with various amounts of wood pulp powder through solution blending technic to verify the effect of reinforcing pulp amount on the mechanical properties of blend films. Also these blend films were further modified with TDI(toluene diisocyanate) as crosslinking agent to introduce urethane functions by reaction of pulp hydroxyl groups and isocyanate. As a result, the tensile strength of blend film with 0.25 wt% pulp was increased from $565.25kg_f/cm^2$ for PLA film itself to $624.20kg_f/cm^2$. However, elongation of this film was decreased by 50% of that of PLA film itself. Only PLA/pulp blend film further modified with 500% of TDI/0.25 wt% pulp showed the slightly increased tensile strength but decreased elongation. Melting point and glass transition temperature of PLA/pulp blend films were confirmed by using Differential Scanning Calorimeter(DSC). Thermal stability of these blend films measured by TGA showed only a slight increase at temperature lower than $300^{\circ}C$.

본 연구에서는 생분해성 고분자인 PLA(polylactic acid)의 기계적 열적 물성 향상을 위해 목재에서 얻은 펄프분말을 블랜딩하여 펄프분말의 함량에 따른 PLA/펄프 복합필름의 기계적, 열적 물성을 확인하였으며, 또한 이 복합필름에 가교제로 TDI(toluene diisocyanate)를 첨가하여 복합필름의 물성 향상을 확인하였다. 그 결과 순수한 PLA 필름의 경우 인장강도가 $565.25kg_f/cm^2$인 것을 확인하였으며, 펄프분말의 함량이 0.25 wt% 일 때의 인장강도가 $624.20kg_f/cm^2$로 약 9.1 % 증가하는 것을 확인하였다. 반면 연신율의 경우 전 복합필름이 순수 PLA 필름에 비해 약 50% 감소하는 것을 확인하였다. 그리고 가교제로 TDI를 첨가한 PLA/펄프분말의 경우도 TDI의 함량에 관계없이 0.25 wt%의 펄프분말만을 첨가한 복합필름에 비해 연신율이 낮았으며, 인장강도의 경우 500% TDI를 첨가한 경우 $640.43kg_f/cm^2$로 증가하였다. 또한, PLA/펄프 복합필름에서 TDI를 가교시킨 PLA/펄프 복합필름은 가교시키지 않은 PLA/펄프 복합필름에 비해 $300^{\circ}C$ 이하에서의 열적 안정성은 우레탄기의 형성에 의해 TDI의 함량이 높은 경우 약간 증가하였다.

Keywords

References

  1. M. Tapasi and K. Nhol, PLA based Biopolymer Reinforced with Natural Fibre: A Review, J. Polym. Environ., 19, 714 (2011). https://doi.org/10.1007/s10924-011-0320-6
  2. A. K. Mohanty, M. Misra and G. Hinrichsen, Biofibres, biodegradable polymers and biocomposites: An overview, Macromol Mater Eng, 276, 1 (2000).
  3. P. Theinsathid, A. Chandrachai, and S. Keeratipibul, Managing Bioplastics Business Innovation in Start Up Phase, J, Technol, Manag, Innov,, 4, 82 (2009).
  4. T. Nishino, K. Hirao, M. Kotera, K. Nakamae, and H. Inagaki, Kenaf reinforced biodegradable composite, Compos. Sci. Technol., 63,1281 (2003). https://doi.org/10.1016/S0266-3538(03)00099-X
  5. K. Oksman, M. Skrifvarsb, and J. F. Selinc, Natural fibres as reinforcement in polylactic acid (PLA) composites, Compos. Sci. Technol., 63, 1317 (2003). https://doi.org/10.1016/S0266-3538(03)00103-9
  6. D. Plackett, T. L. Andersen, W. B. Pedersen, and L. Nielsen, Biodegradable composites based on l-polylactide and jute fibres, Compos. Sci. Technol., 63, 1287 (2003). https://doi.org/10.1016/S0266-3538(03)00100-3
  7. M. Shibata, K. Ozawa, N. Teramoto, R. Yosomiya, and H. Takeishi, Biocomposites made from short abaca fiber and biodegradable polyesters, Macromol, Mater, Eng,, 288, 35 (2003). https://doi.org/10.1002/mame.200290031
  8. B. Bax and J. Mussig, Impact and tensile properties of PLA/Cordenka and PLA/flax composites, Compos. Sci. Technol, 68, 1601 (2008). https://doi.org/10.1016/j.compscitech.2008.01.004
  9. L. S. Liu, M. L Fishman, K. B. Hicks, and C-K. Liu, Biodegradable composites from sugar beet pulp and poly(lactic acid), J. Agric. Food Chem., 53, 9017-9022 (2005). https://doi.org/10.1021/jf058083w
  10. A. Iwatake, M. Nogi, and H. Yano, Cellulose nanofiber-reinforced polylactic acid, Compos. Sci. Technol., 68. 2103 (2008). https://doi.org/10.1016/j.compscitech.2008.03.006
  11. M. Kowalczyk, E. Piorkowska, P. Kulpinski, and M. Pracella, Mechanical and thermal properties of PLA composites with cellulose nanofibers and standard size fibers, App. Sci. Manufac., 42, 1509 (2011). https://doi.org/10.1016/j.compositesa.2011.07.003
  12. D. Bondeson and K. Oksman, Polylactic acid/cellulose whisker nanocomposites modified by polyvinyl alcohol, Applied Science and Manufacturing, 38, 2486 (2007). https://doi.org/10.1016/j.compositesa.2007.08.001
  13. L. Jiang, F. Chen, J. Qian, J. Huang, M. Wolcott, L. S. Liu, and J. Zhang, Reinforcing and Toughening Effects of Bamboo pulp Fiber on Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) Fiber composites, Ind. Eng. Chem. Res., 49, 572 (2010). https://doi.org/10.1021/ie900953z
  14. E. Petinakis, L. Yu, G. Edward, K. Dean, H. Liu, A. D. Scully, Effect of Matrix-Particle Interfacial Adhesion on the Mechanical Properties of Poly(lactic acid)/Wood-Flour Micro-Composites, J. Polym. Environ., 17, 83 (2009). https://doi.org/10.1007/s10924-009-0124-0
  15. T. Tabi, I. E. Sajo, F. Szabo, A. S. Luyt, and J. G. Kovacs, Crystalline structure of annealed polylactic acid and its relation to processing, eXPRESS Polymer Letters, 4, 659 (2010). https://doi.org/10.3144/expresspolymlett.2010.80