DOI QR코드

DOI QR Code

Kinesin Superfamily-associated Protein 3 (KAP3) Mediates the Interaction between Kinesin-II Motor Subunits and HS-1-associated Protein X-1 (HAX-1) through Direct Binding

Kinesin superfamily-associated protein 3 (KAP3)를 통한 HS-1-associated protein X-1 (HAX-1)과 Kinesin-II의 결합

  • Jang, Won Hee (Departments of Biochemistry, College of Medicine and UHRC, Inje University) ;
  • Seog, Dae-Hyun (Departments of Biochemistry, College of Medicine and UHRC, Inje University)
  • 장원희 (인제대학교 의과대학 생화학교실) ;
  • 석대현 (인제대학교 의과대학 생화학교실)
  • Received : 2013.08.01
  • Accepted : 2013.08.16
  • Published : 2013.08.30

Abstract

Kinesin-II, a molecular motor, consists of two different motor subunits, KIF3A and KIF3B, and one large kinesin superfamily-associated protein 3 (KAP3), forming a heterotrimeric complex. KAP3 is associated with the tail domains of motor subunits. However, its exact role remains unclear. Here, we demonstrated KAP3 binding to the carboxyl (C)-terminal tail region of HS-associated protein X-1 (HAX-1). HAX-1 bound to the C-terminal region of KAP3, but not to KIFs (KIF3A, KIF3B, and KIF5B) and the kinesin light chain (KLC) in the yeast two-hybrid assays. The interaction was further confirmed in the glutathione S-transferase (GST) pull-down assay and by co-immunoprecipitation. Anti- HAX-1 antibody as well as anti-KIF3A antibody co-immunoprecipitated KIF3B and KAP3 from mouse brain extracts. These results suggest that KAP3 could mediate the interaction between Kinesin-II and HAX-1.

Kinesin-II는 다양한 운반체들을 미세소관을 따라 운반하는 motor 단백질의 하나이다. Kinesin-II는 두 개의 motor 단백질 KIF3A와 KIF3B, 그리고 motor 단백질의 말단에 결합하는 kinesin superfamily-associated protein 3 (KAP3)로 구성되어 있다. KAP3는 Kinesin-II의 기능에 중요한 역할을 하는 것으로 알려져 있으나 명확한 기능은 아직 밝혀지지 않았다. 본 연구에서 KAP3와 결합하는 단백질을 분리하기 위하여 효모 two-hybrid system을 사용하여 탐색한 결과 HS-1-associated protein X-1 (HAX-1)을 분리하였다. KAP3은 HAX-1의 C-말단 부위와 결합하며, HAX-1은 KAP3의 C-말단부위와 결합함을 효모 two-hybrid assay로 확인하였다. 그러나, HAX-1는 KIF3A, KIF3B, KIF5B, 그리고 kinesin light chain (KLC)과는 결합하지 않았다. KAP3와 HAX-1의 단백질 결합은 glutathione S-transferase (GST) pull-down assay와 공동면역침강으로 추가 확인하였다. 생쥐의 뇌 파쇄액을 HAX-1 항체와 KIF3A 항체로 면역침강을 행한 결과 Kinesin-II의 구성단백질인 KIF3B와 KAP3가 같이 침강하였다. 이러한 결과들은 KAP3가 Kinesin-II와 HAX-1의 결합을 매개한다는 것을 시사한다.

Keywords

References

  1. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. and Struhl, K. 1998. Current Protocols in Molecular Biology. John Wiley & Sons.
  2. Brady, S. T. 1985. A novel brain ATPase with properties expected for the fast axonal transport motor. Nature 317, 73-75. https://doi.org/10.1038/317073a0
  3. Chao, J. R., Parganas, E., Boyd, K., Hong, C. Y., Opferman, J. T. and Ihle, J. N. 2008. HAX1-mediated processing of HtrA2 by Parl allows survival of lymphocytes and neurons. Nature 452, 98-102. https://doi.org/10.1038/nature06604
  4. Davenport, J. R., Watts, A. J., Roper, V. C., Croyle, M. J., van Groen, T., Wyss, J. M., Nagy, T. R., Kesterson, R. A. and Yoder, B. K. 2007. Disruption of intraflagellar transport in adult mice leads to obesity and slow-onset cystic kidney disease. Curr Biol 17, 1586-1594. https://doi.org/10.1016/j.cub.2007.08.034
  5. Fadeel, B. and Grzybowska, E. 2009. HAX-1: a multifunctional protein with emerging roles in human disease. Biochim Biophys Acta 1790, 1139-1148. https://doi.org/10.1016/j.bbagen.2009.06.004
  6. Gallagher, A. R., Cedzich, A., Gretz, N., Somlo, S. and Witzgall, R. 2000. The polycystic kidney disease protein PKD2 interacts with HAX-1, a protein associated with the actin cytoskeleton. Proc Natl Acad Sci USA 97, 4017-4022. https://doi.org/10.1073/pnas.97.8.4017
  7. Hirokawa, N., Niwa, S. and Tanaka, Y. 2010. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 68, 610-638. https://doi.org/10.1016/j.neuron.2010.09.039
  8. Hirokawa, N., Tanaka, Y. and Okada, Y. 2012. Cilia, KIF3 molecular motor and nodal flow. Curr Opin Cell Biol 24, 31-39. https://doi.org/10.1016/j.ceb.2012.01.002
  9. Hirokawa, N. 1998. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519-526. https://doi.org/10.1126/science.279.5350.519
  10. Kanai, Y., Okada, Y., Tanaka, Y., Harada, A., Terada, S. and Hirokawa, N. 2000. KIF5C, a novel neuronal kinesin enriched in motor neurons. J Neurosci 20, 6374-6384.
  11. Kim, S. J., Lee, C. H., Park, H. Y., Yea, S. S., Jang, W. H., Lee, S. K., Park, Y. H., Cha, O. S., Moon, I. S. and Seog, D. H. 2007. JSAP1 interacts with kinesin light chain 1 through conserved binding segments. J Life Sci 17, 889-895. https://doi.org/10.5352/JLS.2007.17.7.889
  12. Kozminski, K. G., Beech, P. L. and Rosenbaum, J. L. 1995. The Chlamydomonas kinesin-like protein FLA10 is involved in motility associated with the flagellar membrane. J Cell Biol 131, 1517-1527. https://doi.org/10.1083/jcb.131.6.1517
  13. Lin, F., Hiesberger, T., Cordes, K., Sinclair, A. M., Goldstein, L. S., Somlo, S. and Igarashi, P. 2003. Kidney-specific inactivation of the KIF3A subunit of kinesin-II inhibits renal ciliogenesis and produces polycystic kidney disease. Proc Natl Acad Sci USA 100, 5286-5291. https://doi.org/10.1073/pnas.0836980100
  14. Modem, S. and Reddy, T. R. 2008. An anti-apoptotic protein, HAX-1, inhibits the HIV-1 rev function by altering its sub-cellular localization. J Cell Physiol 214, 14-19. https://doi.org/10.1002/jcp.21305
  15. Mueller, J., Perrone, C. A., Bower, R., Cole, D. G. and Porter, M. E. 2005. The FLA3 KAP subunit is required for localization of kinesin-2 to the site of flagellar assembly and processive anterograde intraflagellar transport. Mol Biol Cell 16, 1341-1354. https://doi.org/10.1091/mbc.E04-10-0931
  16. Ou, G., Koga, M., Blacque, O. E., Murayama, T., Ohshima, Y., Schafer, J. C., Li, C., Yoder, B. K., Leroux, M. R. and Scholey, J. M. 2007. Sensory ciliogenesis in Caenorhabditis elegans: assignment of IFT components into distinct modules based on transport and phenotypic profiles. Mol Biol Cell 18, 1554-1569. https://doi.org/10.1091/mbc.E06-09-0805
  17. Ramsay, A. G., Keppler, M. D., Jazayeri, M., Thomas, G. J., Parsons, M., Violette, S., Weinreb, P., Hart, I. R. and Marshall, J. F. 2007. HS1-associated protein X-1 regulates carcinoma cell migration and invasion via clathrin-mediated endocytosis of integrin alphavbeta6. Cancer Res 67, 5275-5284. https://doi.org/10.1158/0008-5472.CAN-07-0318
  18. Sarpal, R., Todi, S. V., Sivan-Loukianova, E., Shirolikar, S., Subramanian, N., Raff, E. C., Erickson, J. W., Ray, K. and Eberl, D. F. 2003. Drosophila KAP interacts with the kinesin II motor subunit KLP64D to assemble chordotonal sensory cilia, but not sperm tails. Curr Biol 13, 1687-1696. https://doi.org/10.1016/j.cub.2003.09.025
  19. Shimizu, K., Kawabe, H., Minami, S., Honda, T., Takaishi, K., Shirataki, H. and Takai, Y. 1996. SMAP, an Smg GDS-associating protein having arm repeats and phosphorylated by Src tyrosine kinase. J Biol Chem 271, 27013-27017. https://doi.org/10.1074/jbc.271.43.27013
  20. Suzuki, Y., Demoliere, C., Kitamura, D., Takeshita, H., Deuschle, U. and Watanabe, T. 1997. HAX-1, a novel intracellular protein, localized on mitochondria, directly associates with HS1, a substrate of Src family tyrosine kinases. J Immunol 158, 2736-2744.
  21. Tabish, M., Siddiqui, Z. K., Nishikawa, K. and Siddiqui, S. S. 1995. Exclusive expression of C. elegans osm-3 kinesin gene in chemosensory neurons open to the external environment. J Mol Biol 247, 377-389. https://doi.org/10.1006/jmbi.1994.0146
  22. Takeda, S., Yamazaki, H., Seog, D. H., Kanai, Y., Terada, S. and Hirokawa, N. 2000. Kinesin superfamily protein 3 (KIF3) motor transports fodrin-associating vesicles important for neurite building. J Cell Biol 148, 1255-1265. https://doi.org/10.1083/jcb.148.6.1255
  23. Yamazaki, H., Nakata, T., Okada, Y. and Hirokawa, N. 1996. Cloning and characterization of KAP3: a novel kinesin superfamily- associated protein of KIF3A/3B. Proc Natl Acad Sci USA 93, 8443-8448. https://doi.org/10.1073/pnas.93.16.8443

Cited by

  1. Ferritin, an Iron Storage Protein, Associates with Kinesin 1 through the Cargo-binding Region of Kinesin Heavy Chains (KHCs) vol.26, pp.6, 2016, https://doi.org/10.5352/JLS.2016.26.6.698