DOI QR코드

DOI QR Code

Phytochemical contents of agricultural products cultivated by region

재배지역에 따른 농산물의 phytochemical 함량

  • Na, Hwan Sik (Food and Drug Analysis Division, Jeollanamdo Institute of Health and Environment) ;
  • Kim, Jin Young (Food and Drug Analysis Division, Jeollanamdo Institute of Health and Environment) ;
  • Yun, Seol Hee (Food and Drug Analysis Division, Jeollanamdo Institute of Health and Environment) ;
  • Park, Hak Jae (Food and Drug Analysis Division, Jeollanamdo Institute of Health and Environment) ;
  • Choi, Gyeong Cheol (Food and Drug Analysis Division, Jeollanamdo Institute of Health and Environment) ;
  • Yang, Soo In (Food and Drug Analysis Division, Jeollanamdo Institute of Health and Environment) ;
  • Lee, Ji Heon (Food and Drug Analysis Division, Jeollanamdo Institute of Health and Environment) ;
  • Cho, Jeong Young (Department of Food Science and Technology and Functional Food Research Center, Chonnam National University)
  • 나환식 (전라남도 보건환경연구원 식품약품분석과) ;
  • 김진영 (전라남도 보건환경연구원 식품약품분석과) ;
  • 윤설희 (전라남도 보건환경연구원 식품약품분석과) ;
  • 박학재 (전라남도 보건환경연구원 식품약품분석과) ;
  • 최경철 (전라남도 보건환경연구원 식품약품분석과) ;
  • 양수인 (전라남도 보건환경연구원 식품약품분석과) ;
  • 이지헌 (전라남도 보건환경연구원 식품약품분석과) ;
  • 조정용 (전남대학교 식품공학과 및 기능성식품연구센터)
  • Received : 2013.03.07
  • Accepted : 2013.07.19
  • Published : 2013.08.30

Abstract

The purpose of this research is to distinguish the quantitative determination of phytochemicals in various agricultural products and to optimize an HPLC method for the determination of lycopene, lutein, ${\alpha}$-carotene, ${\beta}$-carotene, and cryptoxanthin. Among the different conditions studied, the most suitable ones for our samples were the extraction with hexane/acetone/ethanol (50:25:25, v/v/v), dissolution of the dry extract in tetrahydrofuran/acetonitrile/methanol (15:30:55, v/v/v), injection on a $C_{18}$ column with methanol/acetonitrile (90:10, v/v) + triethylamine $9{\mu}M$ as mobile phase, and ${\lambda}_{detection}$=475 nm. The mean percent recovery for the HPLC method were $120.7{\pm}4.1%$ (lycopene), $89.2{\pm}3.5%$ (lutein), $91.2{\pm}2.9%$ (${\alpha}$-carotene), $99.1{\pm}4.4%$ (${\beta}$-carotene), and $100.0{\pm}5.3%$ (cryptoxanthin). The contents of lutein in the agricultural products were spinach, kiwi, tomato, blueberry, melon, respectively. However, the lycopene contents were the highest in the Black tomato ($56.66{\pm}7.48mg/kg$) and Jangseong tomato ($50.28{\pm}5.42mg/kg$). The concentration of ${\beta}$-carotene in all of the agricultural products ranged from 0.07 mg/kg to 65.03 mg/kg. The quercetin content of the agricultural products increased in the order of blueberry (986.57~1,054.06 mg/100 g), kiwi (44.96~55.09 mg/100 g), hallabong (31.92~35.60 mg/100 g), and tomato (26.38~34.94 mg/100 g). The highest kaempferol content was found in the blueberry (47.79~76.15 mg/100 g) with results in all of the tested samples varying between 6.54~48.11 mg/100 g. The total polyphenol contents of the various agricultural products increased in the blueberry (213.60~229.96 mg/100 g), spinach (112.50~141.67 mg/100 g) and kiwi (46.49~70.44 mg/100 g). The total flavonoid content was the highest in both blueberry and spinach. Vitamin C content was detected in kiwi > hallabong > tomato > blueberry, respectively. The total anthocyanin contents (TAC) was detected in the Damyang blueberry and the imported blueberry.

최근 건강 증진을 위해 소비가 증가하고 있는 농산물을 대상으로 phytochemical 성분을 정량하고, 다양한 phytochemical 성분을 동시에 분석하는 방법에 대해 조사하였다. Lycopene, ${\alpha}$, ${\beta}$-carotene, cryptoxanthin과 lutein을 대상으로 동시분석을 실시한 결과 회수율은 각각 lycopene $120.7{\pm}4.1%$, lutein $89.1{\pm}3.5%$, ${\alpha}$-carotene $91.2{\pm}2.9%$, ${\beta}$-carotene $99.1{\pm}4.4%$, cryptoxanthin $100.0{\pm}5.3%$로 나타나 향후 다양한 phytochemical 성분을 동시에 분석하는데 유효하 방법이 될 것으로 판단된다. 농산물을 대상으로 4종의 phytochemical(${\beta}$-carotene, lycopene, lutein 및 cryptoxanthin)을 분석한 결과, lutein은 시금치>참다래>토마토>블루베리>메론 순이었으며 시료별 분석 결과 시금치(나주, 신안산), 참다래(해남, 보성산)와 블루베리(담양산)가 타 시료에 비해 lutein 함량이 더 높은 결과를 보였다. Lycopene은 토마토와 시금치에서 검출되었으며, 분석 시료 중 흑 토마토($56.66{\pm}7.48mg/kg$)와 장성 토마토($50.28{\pm}5.42mg/kg$)의 lycopene 함량이 가장 높았다. ${\beta}$-carotene의 경우 시금치와 토마토 시료에 가장 많이 함유되어 있었으며 특히, 나주 시금치($65.03{\pm}4.83mg/kg$)와 신안 시금치($37.67{\pm}5.49mg/kg$)에 다량 함유되어 있었다. Quercetin 분석 결과 블루베리에서 가장 높게 검출되어 담양산 블루베리가 $1,054.06{\pm}80.54mg/100g$으로 수입산($986.57{\pm}67.85mg/100g$) 보다 높았으며, kaempferol의 경우도 비슷한 경향을 보였다. 총 폴리페놀의 경우 블루베리(213.60~229.96 mg/100 g)가 가장 높은 결과를 보였고, 시금치(112.50~141.67 mg/100 g), 참다래(46.49~70.44 mg/100 g) 에서도 높게 검출되었다. 총 플라보노이드 함량을 분석한 결과 블루베리, 시금치 시료에서 타 시료에 비해 함량이 높게 검출되었으며, 비타민 C 함량은 참다래(39.45~86.79 mg/100 g), 한라봉(38.65~50.96 mg/100 g), 토마토(5.90~15.97 mg/100 g), 블루베리 순으로 나타났고, 블루베리에서 총 안토시아닌 함량을 측정한 결과 담양산 블루베리>수입산 블루베리 순으로 나타났다. 이상의 결과로 보아 유통 중인 농산물에 다양한 phytochemical 성분이 존재하는 것으로 확인되었으며, 이는 재배지역, 품종, 숙성 정도 등에 따라 조금씩 차이가 나는 것으로 판단된다.

Keywords

References

  1. The Korean Nutrition Society (2011) Phytonutrient nutrition. Life Science Publishing Co, p 2-3, Seoul, Korea
  2. Lund D (2003) Predicting the impact of food processing on food constituents. J Food Eng, 56, 113-117 https://doi.org/10.1016/S0260-8774(02)00322-9
  3. D’Incalci M, Steward WP, Gesoher AJ (2005) Use of cancer chemopreventive phytochemicals as antineoplastic agents. Lancet Oncol, 6, 899-904 https://doi.org/10.1016/S1470-2045(05)70425-3
  4. Myzak MC, Dashwood RH (2006) Chemoprotection by sulforaphane : keep one eye beyond keap 1. Cancer Lett, 233, 208-218 https://doi.org/10.1016/j.canlet.2005.02.033
  5. Park OJ, Surh Y (2004) Chemopreventive potential of epigallocatechin gallate and genistein : evidence from epidemiological and laboratory studies. Toxicol Lett, 150, 43-56 https://doi.org/10.1016/j.toxlet.2003.06.001
  6. Cornwell T, Cohick W, Raskin I (2004) Dietary phytoestrogens and health. Phytochem, 65, 995-1016 https://doi.org/10.1016/j.phytochem.2004.03.005
  7. Steinberg FM, Bearden MM, Keen CL (2003) Cocoa and chocolate flavonoids : implications for cardiovascular health. J Am Diet Assoc, 103, 215-223 https://doi.org/10.1053/jada.2003.50028
  8. Sforcin JM, Orsi RO, Bankova V (2005) Effect of propolis, some isolated compounds and its source plant on antibody production. J Ehthopharmacol, 98, 301-305 https://doi.org/10.1016/j.jep.2005.01.042
  9. Ferreira AP, Soares GLG, Salgado CA, Goncalves LS, Teixeira FM, Teixeira HC, Kaplan MAC (2003) Immunomodulatory activity of Mollugo verticillata L. Phytomed, 10, 154-158 https://doi.org/10.1078/094471103321659861
  10. Chun S, Vattem DA, Lin Y, Shetty K (2005) Phenolic antioxidants from clonal oregano with antimicrobial activity against Helicobacter pylori. Process Biochem, 40, 809-816 https://doi.org/10.1016/j.procbio.2004.02.018
  11. Werlein H, Kütemeyer C, Schatton G, Hubbermann EM, Schwarz K (2005) Influence of elderberry and black currant concentrates on the growth of microorganisms. Food control, 16, 729-733 https://doi.org/10.1016/j.foodcont.2004.06.011
  12. Lin Y, Labbe RG, Shettyk (2005) Inhibition of Vibrio parahaemolyticus in seafood systems using oregano and cranberry phytochemical synergies and lactic acid. Innov Food Sci Emerg Technol, 6, 453-458 https://doi.org/10.1016/j.ifset.2005.04.002
  13. Bastianetto S, Quirion R (2002) Natural extracts as possible protective agents of brain aging. Neurobiol Aging, 23, 891-897 https://doi.org/10.1016/S0197-4580(02)00024-6
  14. Blaylock RL (1999) Neurodegeneration and aging of the central nerous system : prevention and treatment by phytochemicals and metabolic nutrients. Integ Med, 1, 117-133 https://doi.org/10.1016/S1096-2190(98)00032-8
  15. Cho HJ, Yoo DC, Cho HN, Fan LA, Kim HJ, Khang KW, Jeong HS, Yang SA, Lee IS, Jhee KH (2008) Analysis of phytochemicals in popular medicinal herbs by HPLC and GC-MS. Korean J Food Sci Technol, 40, 277-282
  16. Yoon GA, Yeum KJ, Cho YS, Oliver Chen CY, Tang GW, Blumberg JB, Russell RM, Yoon S, Lee-Kim YC (2012) Carotenoids and total phenolic contents in plant foods commonly consumed in Korea. Nutr Res Pract, 6, 481-490 https://doi.org/10.4162/nrp.2012.6.6.481
  17. Olives Barba AI, Camara Hurtado M, Sanchez Mata MC, Fernandez Ruiz V, Lopez Saenz de Tejada M (2006) Application of a UV-vis detection HPLC method for a rapid determination of lycopene and ${\beta}$-carotene in vegetables. Food Chem, 95, 328-336 https://doi.org/10.1016/j.foodchem.2005.02.028
  18. Gudej J, Tomczyk M (2004) Determination of flavonoids, tannins and ellagic acid in leaves from Rubus L. species. Arch Pharm Res, 27, 1114-1119 https://doi.org/10.1007/BF02975114
  19. Kim JY, Chung JH, Hwang I, Kwan YS, Chai JK, Lee KH, Han TH, Moon JH (2009) Quantification of quercetin and kaempferol contents in different parts of Cudrania tricuspidata and their processed foods. Korean J Hort Sci Technol, 27, 489-496
  20. Swain T, Hills WE, Ortega M (1959) Phenolic constituents of Ptunus domestica. Ⅰ. Quantitative analysis of phenolic constituents. J Sci Food Agric, 10, 83-88
  21. Moreno MI, Isla MI, Sampietro AR, Vattuone MA (2000) Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J Ethnopharmacol, 71, 109-114 https://doi.org/10.1016/S0378-8741(99)00189-0
  22. KFDA (2011) Food Code. Korea Food and Drug Administration, Seoul, Korea, p 10-1-74
  23. Lee J, Dutst RW, Wrolstad RE (2005) Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method : Collaborative study. J AOAC Int, 88, 1269-1278
  24. Kim SN, Kim JS (2012) Method validation and quantification of lutein and zeaxanthin from green leafy vegetables using the UPLC system. Korean J Food Sci Technol, 44, 686-691 https://doi.org/10.9721/KJFST.2012.44.6.686
  25. Lee HS, Kim YN (1997) Beta-carotene and lutein contents in green leafy vegetables. J East Asian Diet Life, 7, 175-180
  26. Choi SH, Kim DH, Kim DS (2011) Composition of ascorbic acid, lycopene, $\beta$-carotene contents in processed tomato products tomato cultivar and part. Korean J Culinary Research, 17, 263-272
  27. Kim DS, Kozukue N, Han JS, Kim MH (2004) The changes of components by maturity stage of tomato II. Korean J Food Culture, 19, 605-610
  28. Kim EO, Lee YJ, Leem HH, Seo IH, Yu MH, Kang DH, Choi SW (2010) Comparison of nutritional and functional constituents and phytochemical characteristics of mulberrys from seven different Morus alba L. cultivars. J Korean Soc Food Sci Nutr, 39, 1467-1475 https://doi.org/10.3746/jkfn.2010.39.10.1467
  29. O JY, Kang SW, Song HY, Kim HA, Hwang EY, Jeon YJ (2010) Antioxidant activity of extracts from blueberry. J Korean Ac Ind Soc, Nov, 744-747
  30. Jeong CH, Choi SG, Heo HJ (2008) Analysis of nutritional compositions and antioxidative activities of Korean commercial blueberry and raspberry. J Korean Soc Food Sci Nutr, 37, 1375-1381 https://doi.org/10.3746/jkfn.2008.37.11.1375
  31. Park GH, Lee SH, Kim HY, Jeong HS, Kim EY, Yun YW, Nam SY, Lee BJ (2011) Comparison in antioxidant effects of four citrus fruits. J Fd Hyg Safety, 26, 355-360
  32. Cho JG, Youn SJ, Lee ET, Kim TW, Kweon DJ (2009) Change of biological activity of melon (Cucumis melo L.) according to frozen storage period. J Appl Biol Chem, 52, 200-204 https://doi.org/10.3839/jabc.2009.034
  33. Hong JJ, Ahn TH (2005) Changes in phytochemical compounds and hazardous factors of spinach by blanching methods. Korean J Food Sci Technol, 37, 268-273
  34. Lee JM, Son ES, Oh SS, Han DS (2001) Contents of total flavonoid and biological activities of edible plants. Korean J Dietary Culture, 16, 504-514
  35. Lee JH, Lee SR (1994) Analysis of phenolic substances contents in Korean plant foods. J Food Sci Technol, 26, 310-316
  36. Maxson ED, Rooney LW (1972) Evaluation of methods for tannin analysis in sorghum grain. Cereal Chem, 49, 719-729
  37. Park YS, Lee GS, Towantakavan K, Park YJ, Oh DM, Heo BG (2009) Chemical composition of kiwifruits, their anti microbial activity and their hyper plasia inhibition effect of against lung cancer cells. J East Asian Soc Dietary Life, 19, 202-209
  38. Jeong CH, Lee WJ, Bae SH, Choi SG (2007) Chemical components and antioxidative activity of Korean gold kiwifruit. J Korean Soc Food Sci Nutr, 36, 859-865 https://doi.org/10.3746/jkfn.2007.36.7.859
  39. Kim HS, Lee SH, Koh JS (2006) Physicochemical properties of Hallabory Tangor(Citrus kiyomi ponkan) cultivated with heating. Korean J Food Preserv, 13, 611-615

Cited by

  1. Quality and Antioxidant Properties of Iced Cookie with Black Tomato (Lycopersicum esculentum) Powder vol.29, pp.1, 2016, https://doi.org/10.9799/ksfan.2016.29.1.065
  2. Antioxidative and Anticancer Activities of the Betatini Cultivar of Cherry Tomato (Lycopersicon esculentum var. cerasiforme) Extract vol.18, pp.4, 2014, https://doi.org/10.13050/foodengprog.2014.18.4.359
  3. Nutritional compositions and antioxidative activities of two blueberry varieties cultivated in South Korea vol.21, pp.6, 2014, https://doi.org/10.11002/kjfp.2014.21.6.790
  4. Phytochemical Contents and Antioxidant Activities of Opuntia ficus-indica var. saboten vol.29, pp.5, 2016, https://doi.org/10.9799/ksfan.2016.29.5.767
  5. 참죽의 추출방법에 따른 폴리페놀 분획의 생리기능성 vol.49, pp.4, 2013, https://doi.org/10.9721/kjfst.2017.49.4.438
  6. 국내산 토마토 품종의 생리활성 물질의 특성 vol.24, pp.1, 2018, https://doi.org/10.20878/cshr.2018.24.1.007
  7. LPS로 유도된 RAW 264.7 세포에 대한 흑색 방울토마토 주스의 항염증 효과 vol.28, pp.5, 2013, https://doi.org/10.5352/jls.2018.28.5.569
  8. 강원남부지역의 지황 재배 적정성 평가 vol.32, pp.5, 2013, https://doi.org/10.7732/kjpr.2019.32.5.471
  9. 토마토(Solanum lycopersicum L.) 품종 간 수용성 비타민과 폴리페놀계 성분 함량 변이 분석 vol.47, pp.1, 2013, https://doi.org/10.5010/jpb.2020.47.1.078