DOI QR코드

DOI QR Code

Physicochemical and Antioxidant Properties of Commercial Vinegars with High Acidity

시판 고산도 식초의 이화학적 품질 및 항산화 특성

  • Jo, Deokjo (School of Food Science and Biotechnology, Kyungpook National University) ;
  • Park, Eun-Joo (School of Food Science and Biotechnology, Kyungpook National University) ;
  • Yeo, Soo-Hwan (Fermentation and Food Processing Division, Dept. of Agrofood Resources, NAAS, RDA) ;
  • Jeong, Yong-Jin (Dept. and Food Science and Technology, Keimyung University) ;
  • Kwon, Joong-Ho (School of Food Science and Biotechnology, Kyungpook National University)
  • 조덕조 (경북대학교 식품공학부) ;
  • 박은주 (경북대학교 식품공학부) ;
  • 여수환 (농촌진흥청 국립농업과학원 농식품자원부 발효이용과) ;
  • 정용진 (계명대학교 식품가공학과) ;
  • 권중호 (경북대학교 식품공학부)
  • Received : 2013.04.12
  • Accepted : 2013.05.27
  • Published : 2013.08.31

Abstract

Various commercial vinegars of high-strength acidity (10% or more of total acidity) were investigated to compare their physicochemical and antioxidant properties. The total acidity of double-strength vinegars was relatively lower than triple-strength vinegars. Irrespective of the acidity, sugar and reducing sugar content ranged from $7.00{\sim}10.80^{\circ}Bx$ and 1.32~3,885.90 mg%, respectively. Free sugars were mainly composed of fructose and glucose, and were relatively high in double-strength vinegars. The content of acetic acid (a principal organic acid in vinegars) increased with acidity, but oxalic acid was not identified in commercial high-strength acidity vinegars. Double-strength vinegars using malt extracts were the highest in free amino acid content, showing 24 kinds of amino acids. The content of total phenolics and flavonoids was highest in apple vinegars of double-strength acidity, which affected the scavenging ability of DPPH and ABTS radicals. Overall, the quality of high-strength acidity vinegars was affected by its content and production methods, and double-strength acidity vinegar using apples showed the best antioxidant activities.

총 산도 10% 이상의 시판 고산도 식초를 원료(사과농축액, 맥아엑기스, 액상포도당 및 현미당화농축액)와 산도(2배 및 3배)에 따라 구입하여 이화학적 품질 및 항산화 특성을 확인하였다. 총산 함량은 2배 식초(12.10~13.41%)와 3배 식초(18.15~18.36%) 사이 유의적인 차이를 나타내었고, 식초의 당도 및 환원당 함량은 각각 $7.00{\sim}10.80^{\circ}Brix$ 및 1.32~3,885.90 mg% 범위로 확인되었으며 일정한 경향은 관찰되지 않았다. 고산도 식초의 유리당으로 fructose 및 glucose가 주로 확인되었고, 2배 식초의 경우 3배 식초에 비해 종류와 함량 측면에서 비교적 우수한 것으로 분석되었다. 식초의 품질지표인 acetic acid는 모든 식초에서 7,171~14,762 mg% 함량으로 분석되었고, oxalic acid의 경우 시판 고산도 식초에서는 확인할 수 없었다. 맥아엑기스를 사용한 2배 식초에서 총 24종의 유리아미노산이 확인되었고, 유리아미노산과 필수아미노산의 함량이 가장 높은 것으로 확인되었다. 총 페놀 및 총 플라보노이드 함량은 사과농축액을 원료로 한 2배 식초에서 가장 높게 확인되었고, 이는 DPPH 및 ABTS 라디칼 소거활성에도 영향을 주어 유사한 결과를 나타내었다. 고산도 식초의 품질은 사용된 원료와 제조방법에 영향을 받았으며, 사과를 이용한 2배 식초는 가장 우수한 항산화활성을 나타내었다.

Keywords

References

  1. Jo JS. 1984. The types and characteristics of vinegar. Korean J Food Sci Technol 17: 38-60.
  2. Jeong YJ, Lee MH. 2000. A view and prospect of vinegar industry. Food Industry and Nutrition 5(1): 7-12.
  3. Kim YT, Seo KI, Jung YJ, Lee YS, Shim KH. 1997. The production of vinegar using citron (Citrus junos Seib) juice. J East Asian Soc Dietary Life 7: 301-307.
  4. Gil BI. 2004. Physicochemical characteristics of brown rice vinegars produced by traditional and industrial manufacturing method. J Nat Sci 11: 1-7.
  5. Kim DH. 1999. Studies on the production of vinegar from fig. J Korean Soc Food Sci Nutr 28: 53-60.
  6. Jeong YJ, Seo JH, Jung SH, Shin SR, Kim KS. 1998. The quality comparison of uncleaned rice vinegar by two stages fermentation with commercial uncleaned rice vinegar. Korean J Food Preserv 5: 374-379.
  7. Jeong YJ. 2009. Current trends and future prospects in the Korean vinegar industry. Food Science and Industry 42(2):52-59.
  8. KFDA. 2008. Korea Food Standard Code. Korea Food & Drug Administration. Korea. 5-21-1-5-21-2.
  9. Jo DJ, Park EJ, Kim GR, Yeo SH, Jeong YJ, Kwon JH. 2012. Quality comparison of commercial cider vinegars by their acidity levels. Korean J Food Sci Technol 44: 699-703. https://doi.org/10.9721/KJFST.2012.44.6.699
  10. Lee YC, Lee JH. 2000. A manufacturing process of highstrength vinegars. Food Industry and Nutrition 5(1): 13-17.
  11. Lee SM, Choi YM, Kim YW, Kim DJ, Lee JS. 2009. Antioxidant activity of vinegars commercially available in Korean markets. Food Engineering Process 13: 221-225.
  12. Kim GR, Yoon SR, Lee JH, Yeo SH, Jeong YJ, Yoon KY, Kwon JH. 2010. Physicochemical properties of and volatile components in commercial fruit vinegars. Korean J Food Preserv 17: 616-624.
  13. Woo SM, Jo JY, Lee SW, Kwon JH, Yeo SH, Jeong YJ. 2012. Quality comparison of static-culture and commercial brown rice vinegars. Korean J Food Preserv 19: 301-307. https://doi.org/10.11002/kjfp.2012.19.2.301
  14. Marais JP, de Wit JL, Quicke GV. 1966. A critical examination of the Nelson-Somogyi method for the determination of reducing sugars. Anal Biochem 15: 373-381. https://doi.org/10.1016/0003-2697(66)90098-4
  15. Singleton VL, Rossi Jr JA. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Amer J Enol Viticult 16: 144-158.
  16. Zhishen J, Mengcheng T, Jianming W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64: 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2
  17. Zou Y, Lu Y, Wei D. 2004. Antioxidant activity of a flavonoid- rich extract of Hypericum perforatum L. in vitro. J Agric Food Chem 52: 5032-5039. https://doi.org/10.1021/jf049571r
  18. Blios MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  19. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Catherine RE. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol Med 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  20. SAS. 2001. SAS User's Guide. version 8.1. Statistical Analysis System Institute, Cary, NC, USA.
  21. Seo JH, Kim YJ, Lee KS. 2003. Comparison of physicochemical characteristics of fruit vinegars produced from two-stage fermentation. Food Industry and Nutrition 8(3):40-44.
  22. Moon SY, Chung HC, Yoon HN. 1997. Comparative analysis of commercial vinegars in physicochemical properties, minor components and organoleptic tastes. Korean J Food Sci Technol 29: 663-670.
  23. Woo SM, Kim TY, Yeo SH, Kim SB, Kim JS, Kim MH, Jeong YJ. 2007. Quality characteristics of alcohol fermentation broth and by-product of brown rice varieties. Korean J Food Preserv 14: 557-563.
  24. Furukawa S, Ueda R. 1963. Studies on non-volatile organic acid in vinegar, contents of non-volatile organic acid in commercial vinegar. J Ferment Technol 41: 14-19.
  25. Kim GR, Yoon SR, Lee JH, Yeo SH, Kim TY, Jeong YJ, Yoon KY, Kown JH. 2009. Quality comparison of commercial brown rice vinegar fermented with and without ethanol. Korean J Food Preserv 16: 893-899.
  26. Jo BH. 1987. Studies on quality characteristics of commercial vinegars. MS Thesis. Seoul Woman's University, Seoul, Korea.
  27. Bidlack W. 1999. Phytochemicals as bioactive agents. Technomic Publishing Co, Lancaster, Basel, Switzerland. p 25-36.
  28. Hassas-Roudsari M, Chang PR, Pegg RB, Tyler RT. 2009. Antioxidant capacity of bioactives extracted from canola meal by subcritical water, ethanolic and hot water extraction. Food Chem 114: 717-726. https://doi.org/10.1016/j.foodchem.2008.09.097
  29. Wang MF, Shao Y, Li JG, Zhu NQ, Rngarajan M, Lavoie EJ, Ho CT. 1998. Antioxidative phenolic compounds from sage (Salivia officinalis). J Agric Food Chem 46: 4869-4873. https://doi.org/10.1021/jf980614b
  30. Hong SM, Kang MJ, Lee JH, Jeong JH, Kwon SH, Seo KI. 2012. Production of vinegar using Rubus cereanus and its antioxidant activities. Korean J Food Preserv 19: 594-603. https://doi.org/10.11002/kjfp.2012.19.4.594
  31. Hong SM, Moon HS, Lee JH, Lee HI, Jeong JH, Lee MK, Leo KI. 2012. Development of functional vinegar by using cucumbers. J Korean Soc Food Sci Nutr 41: 927-935. https://doi.org/10.3746/jkfn.2012.41.7.927
  32. Labuza TP. 1971. Kinetics of lipid oxidation in foods. Crit Rev Food Technol 2: 335-405.
  33. Xu Q, Tao W, Ao Z. 2007. Antioxidant activity of vinegar melanoidins. Food Chem 102: 841-849. https://doi.org/10.1016/j.foodchem.2006.06.013
  34. Sakanaka S, Ishihara Y. 2008. Comparison of antioxidant properties of persimmon vinegar and some other commercial vinegars in radical-scavenging assays and on lipid oxidation in tuna homogenates. Food Chem 107: 739-744. https://doi.org/10.1016/j.foodchem.2007.08.080
  35. Frankel EN. 1991. Recent advances in lipid oxidation. J Sci Food Agric 54: 495-511. https://doi.org/10.1002/jsfa.2740540402
  36. Yen GC, Chang YC, Chen JP. 2002. Antioxidant activity of mycelia from Aspergillus candidus. J Food Sci 67: 567-572. https://doi.org/10.1111/j.1365-2621.2002.tb10639.x

Cited by

  1. Quality Characteristics and Biological Activities of Vinegars Added with Young Leaves of Akebia quinata vol.43, pp.7, 2014, https://doi.org/10.3746/jkfn.2014.43.7.989
  2. 레몬그라스 식초의 초산발효 특성과 항산화 활성 vol.24, pp.5, 2017, https://doi.org/10.11002/kjfp.2017.24.5.680
  3. Physicochemical Properties of Commercial Citrus Fruit Vinegar Products vol.33, pp.4, 2013, https://doi.org/10.9724/kfcs.2017.33.4.420
  4. Antioxidant and anti-inflammatory activity on sea tangle (Laminaria japonica) adding vinegar vol.26, pp.2, 2013, https://doi.org/10.11002/kjfp.2019.26.2.211
  5. 첨가당의 종류에 따른 저장 중 식초음료의 품질특성 vol.52, pp.4, 2013, https://doi.org/10.9721/kjfst.2020.52.4.325