DOI QR코드

DOI QR Code

Effects of Endurance Exercise and Ginsenoside Rb1 on AMP-Activated Protein Kinase, Phosphatidylinositol 3-Kinase Expression and Glucose Uptake in the Skeletal Muscle of Rats

지구성 운동과 Ginsenoside Rb1가 쥐 골격근의 AMP-Activated Protein Kinase(APMK), Phosphatidylinositol 3-Kinase(PI3K) 발현 및 Glucose Uptake에 미치는 영향

  • Jung, Hyun-Lyung (Exercise Metabolism Laboratory, Kyungpook National University) ;
  • Shin, Young Ho (Exercise Metabolism Laboratory, Kyungpook National University) ;
  • Kang, Ho-Youl (Exercise Metabolism Laboratory, Kyungpook National University)
  • 정현령 (경북대학교 운동대사 실험실) ;
  • 신영호 (경북대학교 운동대사 실험실) ;
  • 강호율 (경북대학교 운동대사 실험실)
  • Received : 2013.07.08
  • Accepted : 2013.07.22
  • Published : 2013.08.31

Abstract

This study investigated the effects of endurance exercise and ginsenoside $Rb_1$ on AMP-activated protein kinase (AMPK), phosphatidylinositol 3-kinase (PI3K) protein expression and glucose uptake in the skeletal muscle of rats. A total of 32 rats were randomly divided into four groups: CON (Control group, n=8), Ex (Exercise group; 25 m/min for 1 h, 6 days/week, 2 weeks, n=8), $Rb_1$ (Ginsenoside $Rb_1$ group; n=8), and $Rb_1/Ex$ ($Rb_1$+Exercise group, n=8). The $Rb_1$ and $Rb_1/Ex$ groups were incubated in ginsenoside $Rb_1$ (KRBP buffer, $100{\mu}g/mL$) for 60 min after a 2-week experimental treatment. After 2 weeks, the expression of phosphorylated $AMPK{\alpha}$ $Thr^{172}$, total $AMPK{\alpha}$, the p85 subunit of PI3K, pIRS-1 $Tyr^{612}$, and pAkt $Ser^{473}$ were determined in the soleus muscle. Muscle glucose uptake was measured using 2-deoxy-D-[$^3H$] glucose in epitroclearis muscle. Muscle glucose uptake was significantly higher in the three experimental groups (Ex, $Rb_1$, $Rb_1/Ex$) compared to the CON group (P<0.05). The expression of $tAMPK{\alpha}$ and $pAMPK{\alpha}$ $Thr^{172}$ was significantly higher in the Ex, $Rb_1$, and $Rb_1/Ex$ groups compared to the CON group (P<0.05). The expression of pAkt $Ser^{473}$ was significantly higher in the $Rb_1$ group compared to the CON and EX groups. However, the expression of pIRS-1 $Tyr^{612}$ and the p85 subunit of PI3K were not significantly different between the four groups. Overall, these results suggest that ginsenoside $Rb_1$ significantly stimulates glucose uptake in the skeletal muscle of rats through increasing phosphorylation in the AMPK pathway, similar to the effects of exercise.

본 연구는 2주간의 지구성 운동과 ginsenoside $Rb_1$이 쥐골격근의 AMPK insulin signaling($tAMPK{\alpha}$, $pAMPK{\alpha}$ $Thr^{172}$)과 PI3K insulin signaling pathway(pIRS-1 $Tyr^{612}$, PI3K $p^{85}$, pAkt $Ser^{473}$) 발현 및 glucose uptake에 미치는 영향을 분석하였다. 골격근내 glucose uptake에서는 비교집단과 비교하여 운동집단(59.4%), $Rb_1$집단(70.5%) $Rb_1/Ex$집단(58.6%)에서 유의하게 증가하였다. 2주간의 지구성 운동과 ginsenoside $Rb_1$이 AMPK insulin signaling pathway에 미치는 효과를 조사한 결과 비교집단에 비해 $AMPK{\alpha}$(Ex, 28.6%; $Rb_1$, 28.5%; $Rb_1/Ex$, 29.8%), $pAMPK{\alpha}$ $Thr^{172}$(Ex, 35.1%; $Rb_1$, 35.3%; $Rb_1/Ex$, 30.9%)의 발현이 유의하게 증가한 것을 알 수 있었다. 2주간의 지구성 운동과 ginsenoside $Rb_1$이 PI3K insulin signaling pathway에 미치는 효과를 알아본 결과 비교집단과 비교하여 IRS-1, PI3K $p^{85}$에서는 유의한 차이가 없었으나 pAkt $Ser^{473}$$Rb_1$ 집단에서 유의하게 증가한 것을 알 수 있었다. 이상의 결과를 종합해 볼 때, ginsenoside $Rb_1$은 운동과 더불어 근육 세포내 AMPK의 활성화와 근육 내 glucose uptake를 증가시켜 제2형 당뇨병 예방과 치료에 효과가 있을 것으로 생각된다. 그러나 본 연구의 결과로 PI3K insulin signaling pathway의 항당뇨 효과는 설명하기는 부족하다고 판단되며 추후 본 연구의 결과를 기초로 ginsenoside $Rb_1$의 농도, 처치시간, 처치방법을 고려한 후속 연구가 필요할 것으로 생각된다.

Keywords

References

  1. Lessard SJ, Rivas DA, Chen ZP, Bonen A, Febbraio MA, Reeder DW, Kemp BE, Yaspelkis BB 3rd, Hawley JA. 2007. Tissue-specific effects of rosiglitazone and exercise in the treatment of lipid-induced insulin resistance. Diabetes 56: 1856-1864. https://doi.org/10.2337/db06-1065
  2. Cao S, Li B, Yi X, Chang B, Zhu B, Lian Z, Zhang Z, Zhao G, Liu H, Zhang H. 2012. Effects of exercise on AMPK signaling and downstream components to PI3K in rat with type 2 diabetes. PLoS One 7: e51709. https://doi.org/10.1371/journal.pone.0051709
  3. Christopher MJ, Chen ZP, Rantzau C, Kemp BE, Alford FP. 2003. Skeletal muscle basal AMP-activated protein kinase activity is chronically elevated in alloxan-diabetic dogs: impact of exercise. J Appl Physiol 95: 1523-1530. https://doi.org/10.1152/japplphysiol.00199.2003
  4. Khan AH, Pessin JE. 2002. Insulin regulation of glucose uptake: a complex interplay of intracellular signalling pathways. Diabetologia 45: 1475-1483. https://doi.org/10.1007/s00125-002-0974-7
  5. Karlsson HK, Zierath JR. 2007. Insulin signaling and glucose transport in insulin resistant human skeletal muscle. Cell Biochem Biophys 48: 103-113. https://doi.org/10.1007/s12013-007-0030-9
  6. Karlsson HK, Ahlsen M, Zierath JR, Wallberg-Henriksson H, Koistinen HA. 2006. Insulin signaling and glucose transport in skeletal muscle from first-degree relatives of type 2 diabetic patients. Diabetes 55: 1283-1288. https://doi.org/10.2337/db05-0853
  7. Musi N, Goodyear LJ. 2006. Insulin resistance and improvements in signal transduction. Endocrine 29: 73-80. https://doi.org/10.1385/ENDO:29:1:73
  8. Sherman LA, Hirshman MF, Cormont M, Le Marchand- Brustel Y, Goodyear LJ. 1996. Differential effects of insulin and exercise on Rab4 distribution in rat skeletal muscle. Endocrinology 137: 266-273. https://doi.org/10.1210/endo.137.1.8536622
  9. Goodyear LJ, Kahn BB. 1998. Exercise, glucose transport, and insulin sensitivity. Annu Rev Med 49: 235-261. https://doi.org/10.1146/annurev.med.49.1.235
  10. Rockl KS, Witczak CA, Goodyear LJ. 2008. Signaling mechanisms in skeletal muscle: acute responses and chronic adaptations to exercise. IUBMB Life 60: 145-153. https://doi.org/10.1002/iub.21
  11. Watson RT, Kanzaki M, Pessin JE. 2004. Regulated membrane trafficking of the insulin-responsive glucose transporter 4 in adipocytes. Endocr Rev 25: 177-204. https://doi.org/10.1210/er.2003-0011
  12. Chambers MA, Moylan JS, Smith JD, Goodyear LJ, Reid MB. 2009. Stretch-stimulated glucose uptake in skeletal muscle is mediated by reactive oxygen species and p38 MAP-kinase. J Physiol 587: 3363-3373. https://doi.org/10.1113/jphysiol.2008.165639
  13. Witczak CA, Sharoff CG, Goodyear LJ. 2008. AMP-activated protein kinase in skeletal muscle: from structure and localization to its role as a master regulator of cellular metabolism. Cell Mol Life Sci 65: 3737-3755. https://doi.org/10.1007/s00018-008-8244-6
  14. Gibala MJ, McGee SL, Garnham AP, Howlett KF, Snow RJ, Hargreaves M. 2009. Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1$\alpha$ in human skeletal muscle. J Appl Physiol 106: 929-934. https://doi.org/10.1152/japplphysiol.90880.2008
  15. Sakamoto K, Goransson O, Hardie DG, Alessi DR. 2004. Activity of LKB1 and AMPK-related kinases in skeletal muscle: effects of contraction, phenformin, and AICAR. Am J Physiol Endocrinol Metab 287: E310-E317. https://doi.org/10.1152/ajpendo.00074.2004
  16. Fujii N, Hayashi T, Hirshman MF, Smith JT, Habinowski SA, Kaijser L, Mu J, Ljungqvist O, Birnbaum MJ, Witters LA, Thorell A, Goodyear LJ. 2000. Exercise induces isoform- specific increase in 5'AMP-activated protein kinase activity in human skeletal muscle. Biochem Biophys Res Commun 273: 1150-1155. https://doi.org/10.1006/bbrc.2000.3073
  17. Hutber CA, Hardie DG, Winder WW. 1997. Electrical stimulation inactivates muscle acetyl-CoA carboxylase and increases AMP-activated protein kinase. Am J Physiol 272:E262-E266.
  18. Ihlemann J, Ploug T, Hellsten Y, Galbo H. 1999. Effect of tension on contraction-induced glucose transport in rat skeletal muscle. Am J Physiol 277: E208-E214.
  19. Musi N, Hayashi T, Fujii N, Hirshman MF, Witters LA, Goodyear LJ. 2001. AMP-activated protein kinase activity and glucose uptake in rat skeletal muscle. Am J Physiol Endocrinol Metab 280: E677-E684.
  20. Vavvas D, Apazidis A, Saha AK, Gamble J, Patel A, Kemp BE. 1997. Contraction-induced changes in acetyl-CoA carboxylase and 5'-AMP-activated kinase in skeletal muscle. J Biol Chem 272: 13255-13261. https://doi.org/10.1074/jbc.272.20.13255
  21. Wojtaszewski JF, Nielsen P, Hansen BF, Richter EA, Kiens B. 2000. Isoform-specific and exercise intensity-dependent activation of 5'-AMP-activated protein kinase in human skeletal muscle. J Physiol 2000 528: 221-226.
  22. Suwa M, Egashira T, Nakano H, Sasaki H, Kumagai S. 2006. Metformin increases the PGC-1alpha protein and oxidative enzyme activities possibly via AMPK phosphorylation in skeletal muscle in vivo. J Appl Physiol 101: 1685-1692.
  23. Fryer LG, Parbu-Patel A, Carling D. 2002. The anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. J Biol Chem 277: 25226-25232. https://doi.org/10.1074/jbc.M202489200
  24. Xiong Y, Shen L, Liu KJ, Tso P, Wang G, Woods SC. 2010. Antiobesity and antihyperglycemic effects of ginsenoside Rb1 in rats. Diabetes 59: 2505-2512. https://doi.org/10.2337/db10-0315
  25. Shang W, Yang Y, Zhou L, Jiang B, Jin H, Chen M. 2008. Ginsenoside Rb1 stimulates glucose uptake through insulin- like signaling pathway in 3T3-L1 adipocytes. J Endocrinol 198: 561-569. https://doi.org/10.1677/JOE-08-0104
  26. Park S, Ahn IS, Kwon DY, Ko BS, Jun WK. 2008. Ginsenosides Rb1 and Rg1 suppress triglyceride accumulation in 3T3-L1 adipocytes and enhance beta-cell insulin secretion and viability in Min6 cells via PKA-dependent pathways. Biosci Biotechnol Biochem 72: 2815-2823. https://doi.org/10.1271/bbb.80205
  27. Sherman WM, Katz AL, Cutler CL, Withers RT, Ivy JL. 1988. Glucose transport: locus of muscle insulin resistance in obese Zucker rats. Am J Physiol 255: E374-E382.
  28. Xie JT, Zhou YP, Dey L, Attele AS, Wu JA, Gu M. 2002 Ginseng berry reduces blood glucose and body weight in db/db mice. Phytomedicine 9: 254-258. https://doi.org/10.1078/0944-7113-00106
  29. Kong HL, Wang JP, Li ZQ, Zhao SM, Dong J, Zhang WW. 2009. Anti-hypoxic effect of ginsenoside Rbl on neonatal rat cardiomyocytes is mediated through the specific activation of glucose transporter-4 ex vivo. Acta Pharmacol Sin 30: 396-403.
  30. Borst SE, Snellen HG. 2001. Metformin, but not exercise training, increases insulin responsiveness in skeletal muscle of Sprague-Dawley rats. Life Sci 69: 1497-1507. https://doi.org/10.1016/S0024-3205(01)01225-5
  31. Jessen N, Pold R, Buhl ES, Jensen LS, Schmitz O, Lund S. 2003. Effects of AICAR and exercise on insulin-stimulated glucose uptake, signaling, and GLUT-4 content in rat muscles. J Appl Physiol 94: 1373-1379. https://doi.org/10.1152/japplphysiol.00250.2002
  32. Ojuka EO, Nolte LA, Holloszy JO. 2000. Increased expression of GLUT-4 and hexokinase in rat epitrochlearis muscles exposed to AICAR in vitro. J Appl Physiol 88:1072-1075.
  33. Shen L, Xiong Y, Wang DQ, Howles P, Basford JE, Wang J. 2013. Ginsenoside Rb1 reduces fatty liver by activating AMP-activated protein kinase in obese rats. J Lipid Res 54:1430-1438. https://doi.org/10.1194/jlr.M035907