DOI QR코드

DOI QR Code

FABRICATION AND MATERIAL ISSUES FOR THE APPLICATION OF SiC COMPOSITES TO LWR FUEL CLADDING

  • Kim, Weon-Ju (Nuclear Materials Division, Korea Atomic Energy Research Institute) ;
  • Kim, Daejong (Nuclear Materials Division, Korea Atomic Energy Research Institute) ;
  • Park, Ji Yeon (Nuclear Materials Division, Korea Atomic Energy Research Institute)
  • Received : 2012.11.29
  • Accepted : 2013.01.02
  • Published : 2013.08.25

Abstract

The fabrication methods and requirements of the fiber, interphase, and matrix of nuclear grade $SiC_f/SiC$ composites are briefly reviewed. A CVI-processed $SiC_f/SiC$ composite with a PyC or $(PyC-SiC)_n$ interphase utilizing Hi-Nicalon Type S or Tyranno SA3 fiber is currently the best combination in terms of the irradiation performance. We also describe important material issues for the application of SiC composites to LWR fuel cladding. The kinetics of the SiC corrosion under LWR conditions needs to be clarified to confirm the possibility of a burn-up extension and the cost-benefit effect of the SiC composite cladding. In addition, the development of end-plug joining technology and fission products retention capability of the ceramic composite tube would be key challenges for the successful application of SiC composite cladding.

Keywords

References

  1. L. L. Snead, T. Nozawa, M. Ferraris, Y. Katoh, R. Shinavski, and M. Sawan, "Silicon Carbide Composites as Fusion Power Reactor Structural Materials," J. Nucl. Mater., 417, 330 (2011). https://doi.org/10.1016/j.jnucmat.2011.03.005
  2. W. -J. Kim, S. M. Kang, K. H. Park, A. Kohyama, W. -S. Ryu, and J. Y. Park, "Fabrication and Ion Irradiation Characteristics of SiC-Based Ceramics for Advanced Nuclear Energy Systems," J. Kor. Ceram. Soc., 42(8), 575 (2005). https://doi.org/10.4191/KCERS.2005.42.8.575
  3. B. Riccardi, L. Giancarli, A. Hasegawa, Y. Katoh, A. Kohyama, R. H. Jones, and L. L. Snead, "Issues and Advances in SiCf/SiC Composites Development for Fusion Reactors," J. Nucl. Mater., 329-333, 56 (2004). https://doi.org/10.1016/j.jnucmat.2004.04.002
  4. Y. Katoh, T. Nozawa, L. L. Snead, K. Ozawa, H. Tanigawa, "Stability of SiC and Its Composites at High Neutron Fluence," J. Nucl. Mater., 417, 400 (2011). https://doi.org/10.1016/j.jnucmat.2010.12.088
  5. G. E. Youngblood, R. J. Kurtz, and R. H. Jones, "SiC/SiC Design for a Flow Channel Insert," Fusion Materials Semiannual Progress Report, DOE-ER-0313/37, DOE Office of Fusion Energy Sciences (2005).
  6. H. Nabielek, W. Schenk, W. Heit, A. -W. Mehner, and D. T. Goodin, "The Performance of High-Temperature Reactor Fuel Particles at Extreme Temperatures," J. Nucl. Technol., 84, 62 (1989).
  7. Y. Katoh, L. L. Snead, T. D. Burchell, and W. E. Windes, "Composite Technology Development Plan," ORNL/TM-2009/185, Oak Ridge National Laboratory (2010).
  8. L. Chaffron and J. -L. Seran, "Innovative SiCf/SiC Composite Materials for Fast Reactor," Nuclear Fuels and Structural Materials for the Next Generation Nuclear Reactors, San Diego, USA, June 13-17, 2010.
  9. J. -A. Jung, S. H. Shin, J. J. Kim, K. J. Choi, and J. H. Kim, "Prediction of Fuel Cladding Performance for Ultra-long Cycle Fast Reactor Application," Transactions of the Korean Nuclear Society Spring Meeting, Jeju, Korea, May 17-18, 2012.
  10. Y. Katoh, L. L. Snead, I. Szlufarska, and W. J. Weber, "Radiation Effects in SiC for Nuclear Structural Applications," Curr. Opin. Solid State Mater. Sci., 16, 143 (2012). https://doi.org/10.1016/j.cossms.2012.03.005
  11. Y. Katoh, D. F. Wilson, and C. W. Forsberg, "Assessment of Silicon Carbide Composites for Advanced Salt-Cooled Reactors," ORNL/TM-2007/168, Oak Ridge National Laboratory (2007).
  12. K. Dawi, M. Balat-Pichelin, L. Charpentier, and F. Audubert, "High Temperature Oxidation of SiC under Helium with Low-pressure Oxygen. Part 3: $\beta$-SiC-SiC/PyC/SiC," J. Eur. Ceram. Soc., 32, 485 (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.08.005
  13. H. Feinroth, M. Ales, E. Barringer, G. Kohse, D. Carpenter, and R. Jaramillo, "Mechanical Strength of CTP Triplex SiC Fuel Clad Tubes after Irradiation in MIT Research Reactor under PWR Coolant Conditions," Ceram. Eng. Sci. Proc., 30(10), 47 (2009).
  14. K. Yueh, D. Carpenter, and H. Feinroth, "Clad in Clay," Nucl. Eng. Intern., 55, 14 (2010).
  15. D. Carpenter, "An Assessment of Silicon Carbides as a Cladding Material for Light Water Reactors," Ph. D. Thesis, Massachusetts Institute of Technology (2010).
  16. G. Griffith, "LWRS Advanced LWR Nuclear Fuels," 2010 American Nuclear Society Winter Meeting and Nuclear Technology Expo, Las Vegas, USA, Nov. 7-11, 2010.
  17. S. Yajima, J. Hayashi, M. Omori, and K. Okamura, "Development of a Silicon Carbide Fibre with High Tensile Strength," Nature, 261, 683 (1976). https://doi.org/10.1038/261683a0
  18. A. R. Bunsell and A. Piant, "A Review of the Development of Three Generations of Small Diameter Silicon Carbide Fibers," J. Mater. Sci., 41, 823 (2006). https://doi.org/10.1007/s10853-006-6566-z
  19. R. Naslain, "Design, Preparation and Properties of Non- Oxide CMCs for Application in Engines and Nuclear Reactors: an Overview," Comp. Sci. Technol., 64, 155 (2004). https://doi.org/10.1016/S0266-3538(03)00230-6
  20. R. J. Kerans, R. S. Hay, N. J. Pagano, and T. A. Parthasarathy, "The Role of the Fiber-Matrix Interface in Ceramic Composites," Am. Ceram. Soc. Bull., 68(2), 429 (1989).
  21. A. G. Evans and F. W. Zok, "The Physics and Mechanics of Fibre-Reinforced Brittle Matrix Composites," J. Mater. Sci., 29, 3857 (1994). https://doi.org/10.1007/BF00355946
  22. T. M. Besmann, B. W. Sheldon, R. A. Rowden, and D. P. Stinton, "Vapor-Phase Fabrication and Properties of Continuous-Filament Ceramic Composites," Science, 253, 1104 (1991). https://doi.org/10.1126/science.253.5024.1104
  23. M. Takeda, Y. Kagawa, S. Mitsuno, Y. Imai, and H. Ichikawa, "Strength of a Hi-NicalonTM/Silicon-Carbide-Matrix Composite Fabricated by the Multiple Polymer Infiltration- Pyrolysis Process," J. Am. Ceram. Soc., 82, 1579 (1999).
  24. W. B. Hillig, "Making Ceramic Composites by Melt Infiltration," Am. Ceram. Soc. Bull., 73(4), 56 (1994).
  25. A. Kohyama, S. -M. Dong, and Y. Katoh, "Development SiC/SiC Composites by Nano-Infiltration and Transient Eutectic (NITE) Process," Ceram. Eng. Sci. Proc., 23(3), 311 (2002). https://doi.org/10.1002/9780470294741.ch36
  26. W. -J. Kim, J. H. Lee, D. -H. Yoon, and J. Y. Park, "Optimization of an Interphase Thickness in Hot-Pressed SiCf/ SiC Composites," Ceram. Eng. Sci. Proc., 30(10), 77 (2009).
  27. W. -J. Kim, "Development and Application of Continuous Fiber Ceramic Composites," Ceram. Kor., 20(2), 65 (2007).
  28. W. J. Sherwood, "CMCs Come Down to Earth," Am. Ceram. Soc. Bull., 82(8), 9101 (2003).
  29. H. Feinroth, "Multi-layered Ceramic Tube for Fuel Con-tainment Barrier and Other Applications in Nuclear and Fossil Power Plants," U.S. Patent, US20090032178A1 (2009).
  30. M. S. Kazimi, J. Dobisesky, D. Carpenter, J. Richards, E. E. Pilat, and E. Shwageraus, "Feasibility and Economic Benefits of PWR Cores with Silicon Carbide Cladding," MIT-ANT-TR-134, Massachusetts Institute of Technology (2011).
  31. J. Dobisesky, E. E. Pilat, and M. S. Kazimi, "Reactor Physics Considerations for Implementing Silicon Carbide Cladding into a PWR Environment," MIT-ANT-TR-136, Massachusetts Institute of Technology (2011).
  32. N. S. Jacobson, "Corrosion of Silicon-Based Ceramics in Combustion Environments," J. Am. Ceram. Soc., 76, 3 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb03684.x
  33. W.-J. Kim, H. S. Hwang, and J. Y. Park, "Corrosion Behavior of Reaction-bonded Silicon Carbide Ceramics in Hightemperature Water," J. Mater. Sci. Lett., 21, 733 (2002). https://doi.org/10.1023/A:1015797324658
  34. W.-J. Kim, H. S. Hwang, J. Y. Park, and W. -S. Ryu, "Corrosion Behaviors of Sintered and Chemically Vapor Deposited Silicon Carbide Ceramics in Water at $360^{\circ}C$," J. Mater. Sci. Lett., 22, 581 (2003). https://doi.org/10.1023/A:1023390111074
  35. E. Barringer, Z. Faiztompkins, H. Feinroth, T. Allen, M. Lance, H. Meyer, L. Walker, and E. Lara-Curzio, "Corrosion of CVD Silicon Carbide in $500^{\circ}C$ Supercritical Water," J. Am. Ceram. Soc., 90, 315 (2007). https://doi.org/10.1111/j.1551-2916.2006.01401.x
  36. E. J. Opila, "Variation of the Oxidation Rate of Silicon Carbide with Water-Vapor Pressure," J. Am. Ceram. Soc., 82, 625 (1999)
  37. C. H. Henager, Jr., A. L. Schemer-Kohrn, S. G. Pitman, D. J. Senor, K. J. Geelhood, and C. L. Painter, "Pitting Corrosion in CVD SiC at $300^{\circ}C$in Deoxygenated High-Purity Water," J. Nucl. Mater., 378, 9 (2008). https://doi.org/10.1016/j.jnucmat.2008.03.025
  38. J. D. Stempien, D. Carpenter, G. Kohse, and M. S. Kazimi, "Behavior of Triplex Silicon Carbide Fuel Cladding Designs Tested under Simulated PWR Conditions," MIT-ANPTR-135, Massachusetts Institute of Technology (2011).
  39. T. Cheng, J. R. Keiser, M. P. Brady, K. A. Terrani, and B. A. Pint, "Oxidation of Fuel Cladding Candidate Materials in Steam Environments at High Temperature and Pressure," J. Nucl. Mater., 427, 396 (2012). https://doi.org/10.1016/j.jnucmat.2012.05.007
  40. B. V. Cockeram, "Flexural Strength and Shear Strength of Silicon Carbide to Silicon Carbide Joints Fabricated by a Molybdenum Diffusion Bonding Technique," J. Am. Ceram. Soc., 88, 1892 (2005). https://doi.org/10.1111/j.1551-2916.2005.00381.x
  41. H. -C. Jung, Y. -H. Park, J. -S. Park, T. Hinoki, and A. Kohyama, "R&D of Joining Technology for SiC Components with Channel," J. Nucl. Mater., 386-388, 847 (2009). https://doi.org/10.1016/j.jnucmat.2008.12.263
  42. C. H. Henager Jr. and R. J. Kurtz, "Low-Activation Joining of SiC/SiC Composites for Fusion Applications," J. Nucl. Mater., 417, 375 (2011). https://doi.org/10.1016/j.jnucmat.2010.12.084
  43. M. Ferraris, M. Salvo, V. Casalegno, S. Han, Y. Katoh, H. C. Jung, T. Hinoki, and A. Kohyama, "Joining of SiC-Based Materials for Nuclear Energy Applications," J. Nucl. Mater., 417, 379 (2011). https://doi.org/10.1016/j.jnucmat.2010.12.160
  44. C. H. Henager Jr., Y. Shin, Y. Blum, L. A. Giannuzzi, B. W. Kempshall, and S. M. Schwarz, "Coatings and Joining for SiC and SiC-Composites for Nuclear Energy Systems," J. Nucl. Mater., 367-370, 1139 (2007). https://doi.org/10.1016/j.jnucmat.2007.03.189
  45. J. Knorr, W. Lippmann, A. -M. Reinecke, R. Wolf, A. Kerber, and A. Wolter, "SiC Encapsulation of (V)HTR Components and Waste by Laser Beam Joining of Ceramics," Nucl. Eng. Des., 238, 3129 (2008). https://doi.org/10.1016/j.nucengdes.2008.01.022
  46. S. Harrison and H. L. Marcus, "Gas-Phase Selective Area Laser Deposition (SALD) Joining of SiC," Mater. Des., 20, 147 (1999). https://doi.org/10.1016/S0261-3069(99)00021-7
  47. L. L. Snead, T. Nozawa, Y. Katoh, T. -S. Byun, S. Kondo, and D. A. Petti, "Handbook of SiC Properties for Fuel Performance Modeling," J. Nucl. Mater., 371, 329 (2007). https://doi.org/10.1016/j.jnucmat.2007.05.016
  48. Y. Katoh and L. L. Snead, "Operating Temperature Window for SiC Ceramics and Composites for Fusion Energy Applications," Fus. Sci. Technol., 56, 1045 (2009). https://doi.org/10.13182/FST09-A9049
  49. G. Newsome, L. L. Snead, T. Hinoki, Y. Katoh, and D. Peters, "Evaluation of Neutron Irradiated Silicon Carbide and Silicon Carbide Composites," J. Nucl. Mater., 371, 76 (2007). https://doi.org/10.1016/j.jnucmat.2007.05.007
  50. T. Hinoki, L. L. Snead, Y. Katoh, A. Hasegawa, T. Nozawa, and A. Kohyama, "The Effect of High Dose/High Temperature Irradiation on High Purity Fibers and Their Silicon Carbide Composites," J. Nucl. Mater., 307-311, 1157 (2002). https://doi.org/10.1016/S0022-3115(02)01054-1
  51. L. L. Snead, Y. Katoh, and S. Connery, "Swelling of SiC at Intermediate and High Irradiation Temperatures," J. Nucl. Mater., 367-370, 677 (2007). https://doi.org/10.1016/j.jnucmat.2007.03.097
  52. Y. Katoh, L. L. Snead, T. Nozawa, S. Kondo, and J. T. Busby, "Thermophysical and Mechanical Properties of Near-Stoichiometric Fiber CVI SiC/SiC Composites after Neutron Irradiation at Elevated Temperatures," J. Nucl. Mater., 403, 48 (2010). https://doi.org/10.1016/j.jnucmat.2010.06.002
  53. D. Carpenter, "Assessment of Innovative Fuel Designs for High Performance Light Water Reactors," M. S. Thesis, Massachusetts Institute of Technology (2006).
  54. D. G. S. Davies, "The Statistical Approach to Engineering Design in Ceramics," Proc. Brit. Ceram. Soc., 22, 429 (1973).
  55. B. V. Cockeram, "Fracture Toughness and Flexural Strength of Chemically Vapor-Deposited Silicon Carbide As Determined Using Chevron-Notched and Surface Crack in Flexure Specimens," J. Am. Ceram. Soc., 87, 1093 (2004). https://doi.org/10.1111/j.1551-2916.2004.01093.x
  56. J. Lamon, "Properties and Characteristics of SiC and SiC /SiC Composites," pp. 323-338 in Comprehensive Nuclear Materials, Edited by R. Konings, Elsevier, Amsterdam (2012).
  57. Y. Katoh, K. Ozawa, T. Hinoki, Y. Choi, L. L. Snead, and A. Hasegawa, "Mechanical Properties of Advanced SiC Fiber Composites Irradiated at Very High Temperatures," J. Nucl. Mater., 417, 416 (2011). https://doi.org/10.1016/j.jnucmat.2011.02.006
  58. B. Tompkins, "Advancing the Cause of Fuel Reliability," Nuclear News, 51(7), 34 (2008).
  59. Y. Katoh, "SiC Ceramic Cladding for Light Water Reactors: Preliminary Technology Review by ORNL/NMST Expert Team," Invited Seminar at Korea Atomic Energy Research Institute, Daejeon, Korea, Sep. 23, 2011.
  60. K. A. Terrani, L. L. Snead, and J. C. Gehin, "Microencapsulated Fuel Technology for Commercial Light Water and Advanced Reactor Application," J. Nucl. Mater., 427, 209 (2012). https://doi.org/10.1016/j.jnucmat.2012.05.021
  61. K. A. Terrani, J. O. Kiggans, Y. Katoh, K. Shimoda, F. C. Montgomery, B. L. Armstrong, C. M. Parish, T. Hinoki, J. D. Hunn, and L. L. Snead, "Fabrication and Characterization of Fully Ceramic Microencapsulated Fuels," J. Nucl. Mater., 426, 268 (2012). https://doi.org/10.1016/j.jnucmat.2012.03.049

Cited by

  1. /SiC Composite Tubes vol.50, pp.6, 2013, https://doi.org/10.4191/kcers.2013.50.6.359
  2. /SiC Composites by X-Ray Computed Microtomography vol.50, pp.6, 2013, https://doi.org/10.4191/kcers.2013.50.6.378
  3. /SiC Composites Prepared by Hybrid Processes of CVI and PIP vol.51, pp.5, 2014, https://doi.org/10.4191/kcers.2014.51.5.430
  4. FEA Study on Hoop Stress of Multilayered SiC Composite Tube for Nuclear Fuel Cladding vol.51, pp.5, 2014, https://doi.org/10.4191/kcers.2014.51.5.435
  5. /SiC composites by selective thermal removal vol.14, pp.3, 2017, https://doi.org/10.1111/ijac.12618
  6. Analysis of Thermal Shock Behavior of Cladding with SiCf/SiC Composite Protective Films vol.29, pp.1, 2016, https://doi.org/10.7234/composres.2016.29.1.040
  7. Experimental phase diagram of SiC in CH3SiCl3–Ar–H2 system produced by fluidized bed chemical vapor deposition and its nuclear applications vol.31, pp.17, 2016, https://doi.org/10.1557/jmr.2016.274
  8. Thermal shock resistance and hoop strength of triplex silicon carbide composite tubes vol.14, pp.6, 2017, https://doi.org/10.1111/ijac.12753
  9. Physical and mechanical properties of SiC-CNTs nano-composites produced by a rapid microwave process vol.28, pp.12, 2017, https://doi.org/10.1007/s10854-017-6629-8
  10. Wettability of SiC and graphite by Co–Ta alloys: evaluation of the reactivity supported by thermodynamic calculations vol.52, pp.23, 2017, https://doi.org/10.1007/s10853-017-1448-0
  11. Evaluation of the Mechanical Properties of TRISO Particles Using Nanoindentation and Ring Compression Testing vol.57, pp.7, 2017, https://doi.org/10.1007/s11340-017-0277-z
  12. /SiC Cladding Tube pp.14381656, 2018, https://doi.org/10.1002/adem.201800773
  13. Evaluation of Silicon Carbide (SiC) for Deep Borehole Disposal Canister vol.16, pp.2, 2018, https://doi.org/10.7733/jnfcwt.2018.16.2.233