References
- L. L. Snead, T. Nozawa, M. Ferraris, Y. Katoh, R. Shinavski, and M. Sawan, "Silicon Carbide Composites as Fusion Power Reactor Structural Materials," J. Nucl. Mater., 417, 330 (2011). https://doi.org/10.1016/j.jnucmat.2011.03.005
- W. -J. Kim, S. M. Kang, K. H. Park, A. Kohyama, W. -S. Ryu, and J. Y. Park, "Fabrication and Ion Irradiation Characteristics of SiC-Based Ceramics for Advanced Nuclear Energy Systems," J. Kor. Ceram. Soc., 42(8), 575 (2005). https://doi.org/10.4191/KCERS.2005.42.8.575
- B. Riccardi, L. Giancarli, A. Hasegawa, Y. Katoh, A. Kohyama, R. H. Jones, and L. L. Snead, "Issues and Advances in SiCf/SiC Composites Development for Fusion Reactors," J. Nucl. Mater., 329-333, 56 (2004). https://doi.org/10.1016/j.jnucmat.2004.04.002
- Y. Katoh, T. Nozawa, L. L. Snead, K. Ozawa, H. Tanigawa, "Stability of SiC and Its Composites at High Neutron Fluence," J. Nucl. Mater., 417, 400 (2011). https://doi.org/10.1016/j.jnucmat.2010.12.088
- G. E. Youngblood, R. J. Kurtz, and R. H. Jones, "SiC/SiC Design for a Flow Channel Insert," Fusion Materials Semiannual Progress Report, DOE-ER-0313/37, DOE Office of Fusion Energy Sciences (2005).
- H. Nabielek, W. Schenk, W. Heit, A. -W. Mehner, and D. T. Goodin, "The Performance of High-Temperature Reactor Fuel Particles at Extreme Temperatures," J. Nucl. Technol., 84, 62 (1989).
- Y. Katoh, L. L. Snead, T. D. Burchell, and W. E. Windes, "Composite Technology Development Plan," ORNL/TM-2009/185, Oak Ridge National Laboratory (2010).
- L. Chaffron and J. -L. Seran, "Innovative SiCf/SiC Composite Materials for Fast Reactor," Nuclear Fuels and Structural Materials for the Next Generation Nuclear Reactors, San Diego, USA, June 13-17, 2010.
- J. -A. Jung, S. H. Shin, J. J. Kim, K. J. Choi, and J. H. Kim, "Prediction of Fuel Cladding Performance for Ultra-long Cycle Fast Reactor Application," Transactions of the Korean Nuclear Society Spring Meeting, Jeju, Korea, May 17-18, 2012.
- Y. Katoh, L. L. Snead, I. Szlufarska, and W. J. Weber, "Radiation Effects in SiC for Nuclear Structural Applications," Curr. Opin. Solid State Mater. Sci., 16, 143 (2012). https://doi.org/10.1016/j.cossms.2012.03.005
- Y. Katoh, D. F. Wilson, and C. W. Forsberg, "Assessment of Silicon Carbide Composites for Advanced Salt-Cooled Reactors," ORNL/TM-2007/168, Oak Ridge National Laboratory (2007).
-
K. Dawi, M. Balat-Pichelin, L. Charpentier, and F. Audubert, "High Temperature Oxidation of SiC under Helium with Low-pressure Oxygen. Part 3:
$\beta$ -SiC-SiC/PyC/SiC," J. Eur. Ceram. Soc., 32, 485 (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.08.005 - H. Feinroth, M. Ales, E. Barringer, G. Kohse, D. Carpenter, and R. Jaramillo, "Mechanical Strength of CTP Triplex SiC Fuel Clad Tubes after Irradiation in MIT Research Reactor under PWR Coolant Conditions," Ceram. Eng. Sci. Proc., 30(10), 47 (2009).
- K. Yueh, D. Carpenter, and H. Feinroth, "Clad in Clay," Nucl. Eng. Intern., 55, 14 (2010).
- D. Carpenter, "An Assessment of Silicon Carbides as a Cladding Material for Light Water Reactors," Ph. D. Thesis, Massachusetts Institute of Technology (2010).
- G. Griffith, "LWRS Advanced LWR Nuclear Fuels," 2010 American Nuclear Society Winter Meeting and Nuclear Technology Expo, Las Vegas, USA, Nov. 7-11, 2010.
- S. Yajima, J. Hayashi, M. Omori, and K. Okamura, "Development of a Silicon Carbide Fibre with High Tensile Strength," Nature, 261, 683 (1976). https://doi.org/10.1038/261683a0
- A. R. Bunsell and A. Piant, "A Review of the Development of Three Generations of Small Diameter Silicon Carbide Fibers," J. Mater. Sci., 41, 823 (2006). https://doi.org/10.1007/s10853-006-6566-z
- R. Naslain, "Design, Preparation and Properties of Non- Oxide CMCs for Application in Engines and Nuclear Reactors: an Overview," Comp. Sci. Technol., 64, 155 (2004). https://doi.org/10.1016/S0266-3538(03)00230-6
- R. J. Kerans, R. S. Hay, N. J. Pagano, and T. A. Parthasarathy, "The Role of the Fiber-Matrix Interface in Ceramic Composites," Am. Ceram. Soc. Bull., 68(2), 429 (1989).
- A. G. Evans and F. W. Zok, "The Physics and Mechanics of Fibre-Reinforced Brittle Matrix Composites," J. Mater. Sci., 29, 3857 (1994). https://doi.org/10.1007/BF00355946
- T. M. Besmann, B. W. Sheldon, R. A. Rowden, and D. P. Stinton, "Vapor-Phase Fabrication and Properties of Continuous-Filament Ceramic Composites," Science, 253, 1104 (1991). https://doi.org/10.1126/science.253.5024.1104
- M. Takeda, Y. Kagawa, S. Mitsuno, Y. Imai, and H. Ichikawa, "Strength of a Hi-NicalonTM/Silicon-Carbide-Matrix Composite Fabricated by the Multiple Polymer Infiltration- Pyrolysis Process," J. Am. Ceram. Soc., 82, 1579 (1999).
- W. B. Hillig, "Making Ceramic Composites by Melt Infiltration," Am. Ceram. Soc. Bull., 73(4), 56 (1994).
- A. Kohyama, S. -M. Dong, and Y. Katoh, "Development SiC/SiC Composites by Nano-Infiltration and Transient Eutectic (NITE) Process," Ceram. Eng. Sci. Proc., 23(3), 311 (2002). https://doi.org/10.1002/9780470294741.ch36
- W. -J. Kim, J. H. Lee, D. -H. Yoon, and J. Y. Park, "Optimization of an Interphase Thickness in Hot-Pressed SiCf/ SiC Composites," Ceram. Eng. Sci. Proc., 30(10), 77 (2009).
- W. -J. Kim, "Development and Application of Continuous Fiber Ceramic Composites," Ceram. Kor., 20(2), 65 (2007).
- W. J. Sherwood, "CMCs Come Down to Earth," Am. Ceram. Soc. Bull., 82(8), 9101 (2003).
- H. Feinroth, "Multi-layered Ceramic Tube for Fuel Con-tainment Barrier and Other Applications in Nuclear and Fossil Power Plants," U.S. Patent, US20090032178A1 (2009).
- M. S. Kazimi, J. Dobisesky, D. Carpenter, J. Richards, E. E. Pilat, and E. Shwageraus, "Feasibility and Economic Benefits of PWR Cores with Silicon Carbide Cladding," MIT-ANT-TR-134, Massachusetts Institute of Technology (2011).
- J. Dobisesky, E. E. Pilat, and M. S. Kazimi, "Reactor Physics Considerations for Implementing Silicon Carbide Cladding into a PWR Environment," MIT-ANT-TR-136, Massachusetts Institute of Technology (2011).
- N. S. Jacobson, "Corrosion of Silicon-Based Ceramics in Combustion Environments," J. Am. Ceram. Soc., 76, 3 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb03684.x
- W.-J. Kim, H. S. Hwang, and J. Y. Park, "Corrosion Behavior of Reaction-bonded Silicon Carbide Ceramics in Hightemperature Water," J. Mater. Sci. Lett., 21, 733 (2002). https://doi.org/10.1023/A:1015797324658
-
W.-J. Kim, H. S. Hwang, J. Y. Park, and W. -S. Ryu, "Corrosion Behaviors of Sintered and Chemically Vapor Deposited Silicon Carbide Ceramics in Water at
$360^{\circ}C$ ," J. Mater. Sci. Lett., 22, 581 (2003). https://doi.org/10.1023/A:1023390111074 -
E. Barringer, Z. Faiztompkins, H. Feinroth, T. Allen, M. Lance, H. Meyer, L. Walker, and E. Lara-Curzio, "Corrosion of CVD Silicon Carbide in
$500^{\circ}C$ Supercritical Water," J. Am. Ceram. Soc., 90, 315 (2007). https://doi.org/10.1111/j.1551-2916.2006.01401.x - E. J. Opila, "Variation of the Oxidation Rate of Silicon Carbide with Water-Vapor Pressure," J. Am. Ceram. Soc., 82, 625 (1999)
-
C. H. Henager, Jr., A. L. Schemer-Kohrn, S. G. Pitman, D. J. Senor, K. J. Geelhood, and C. L. Painter, "Pitting Corrosion in CVD SiC at
$300^{\circ}C$ in Deoxygenated High-Purity Water," J. Nucl. Mater., 378, 9 (2008). https://doi.org/10.1016/j.jnucmat.2008.03.025 - J. D. Stempien, D. Carpenter, G. Kohse, and M. S. Kazimi, "Behavior of Triplex Silicon Carbide Fuel Cladding Designs Tested under Simulated PWR Conditions," MIT-ANPTR-135, Massachusetts Institute of Technology (2011).
- T. Cheng, J. R. Keiser, M. P. Brady, K. A. Terrani, and B. A. Pint, "Oxidation of Fuel Cladding Candidate Materials in Steam Environments at High Temperature and Pressure," J. Nucl. Mater., 427, 396 (2012). https://doi.org/10.1016/j.jnucmat.2012.05.007
- B. V. Cockeram, "Flexural Strength and Shear Strength of Silicon Carbide to Silicon Carbide Joints Fabricated by a Molybdenum Diffusion Bonding Technique," J. Am. Ceram. Soc., 88, 1892 (2005). https://doi.org/10.1111/j.1551-2916.2005.00381.x
- H. -C. Jung, Y. -H. Park, J. -S. Park, T. Hinoki, and A. Kohyama, "R&D of Joining Technology for SiC Components with Channel," J. Nucl. Mater., 386-388, 847 (2009). https://doi.org/10.1016/j.jnucmat.2008.12.263
- C. H. Henager Jr. and R. J. Kurtz, "Low-Activation Joining of SiC/SiC Composites for Fusion Applications," J. Nucl. Mater., 417, 375 (2011). https://doi.org/10.1016/j.jnucmat.2010.12.084
- M. Ferraris, M. Salvo, V. Casalegno, S. Han, Y. Katoh, H. C. Jung, T. Hinoki, and A. Kohyama, "Joining of SiC-Based Materials for Nuclear Energy Applications," J. Nucl. Mater., 417, 379 (2011). https://doi.org/10.1016/j.jnucmat.2010.12.160
- C. H. Henager Jr., Y. Shin, Y. Blum, L. A. Giannuzzi, B. W. Kempshall, and S. M. Schwarz, "Coatings and Joining for SiC and SiC-Composites for Nuclear Energy Systems," J. Nucl. Mater., 367-370, 1139 (2007). https://doi.org/10.1016/j.jnucmat.2007.03.189
- J. Knorr, W. Lippmann, A. -M. Reinecke, R. Wolf, A. Kerber, and A. Wolter, "SiC Encapsulation of (V)HTR Components and Waste by Laser Beam Joining of Ceramics," Nucl. Eng. Des., 238, 3129 (2008). https://doi.org/10.1016/j.nucengdes.2008.01.022
- S. Harrison and H. L. Marcus, "Gas-Phase Selective Area Laser Deposition (SALD) Joining of SiC," Mater. Des., 20, 147 (1999). https://doi.org/10.1016/S0261-3069(99)00021-7
- L. L. Snead, T. Nozawa, Y. Katoh, T. -S. Byun, S. Kondo, and D. A. Petti, "Handbook of SiC Properties for Fuel Performance Modeling," J. Nucl. Mater., 371, 329 (2007). https://doi.org/10.1016/j.jnucmat.2007.05.016
- Y. Katoh and L. L. Snead, "Operating Temperature Window for SiC Ceramics and Composites for Fusion Energy Applications," Fus. Sci. Technol., 56, 1045 (2009). https://doi.org/10.13182/FST09-A9049
- G. Newsome, L. L. Snead, T. Hinoki, Y. Katoh, and D. Peters, "Evaluation of Neutron Irradiated Silicon Carbide and Silicon Carbide Composites," J. Nucl. Mater., 371, 76 (2007). https://doi.org/10.1016/j.jnucmat.2007.05.007
- T. Hinoki, L. L. Snead, Y. Katoh, A. Hasegawa, T. Nozawa, and A. Kohyama, "The Effect of High Dose/High Temperature Irradiation on High Purity Fibers and Their Silicon Carbide Composites," J. Nucl. Mater., 307-311, 1157 (2002). https://doi.org/10.1016/S0022-3115(02)01054-1
- L. L. Snead, Y. Katoh, and S. Connery, "Swelling of SiC at Intermediate and High Irradiation Temperatures," J. Nucl. Mater., 367-370, 677 (2007). https://doi.org/10.1016/j.jnucmat.2007.03.097
- Y. Katoh, L. L. Snead, T. Nozawa, S. Kondo, and J. T. Busby, "Thermophysical and Mechanical Properties of Near-Stoichiometric Fiber CVI SiC/SiC Composites after Neutron Irradiation at Elevated Temperatures," J. Nucl. Mater., 403, 48 (2010). https://doi.org/10.1016/j.jnucmat.2010.06.002
- D. Carpenter, "Assessment of Innovative Fuel Designs for High Performance Light Water Reactors," M. S. Thesis, Massachusetts Institute of Technology (2006).
- D. G. S. Davies, "The Statistical Approach to Engineering Design in Ceramics," Proc. Brit. Ceram. Soc., 22, 429 (1973).
- B. V. Cockeram, "Fracture Toughness and Flexural Strength of Chemically Vapor-Deposited Silicon Carbide As Determined Using Chevron-Notched and Surface Crack in Flexure Specimens," J. Am. Ceram. Soc., 87, 1093 (2004). https://doi.org/10.1111/j.1551-2916.2004.01093.x
- J. Lamon, "Properties and Characteristics of SiC and SiC /SiC Composites," pp. 323-338 in Comprehensive Nuclear Materials, Edited by R. Konings, Elsevier, Amsterdam (2012).
- Y. Katoh, K. Ozawa, T. Hinoki, Y. Choi, L. L. Snead, and A. Hasegawa, "Mechanical Properties of Advanced SiC Fiber Composites Irradiated at Very High Temperatures," J. Nucl. Mater., 417, 416 (2011). https://doi.org/10.1016/j.jnucmat.2011.02.006
- B. Tompkins, "Advancing the Cause of Fuel Reliability," Nuclear News, 51(7), 34 (2008).
- Y. Katoh, "SiC Ceramic Cladding for Light Water Reactors: Preliminary Technology Review by ORNL/NMST Expert Team," Invited Seminar at Korea Atomic Energy Research Institute, Daejeon, Korea, Sep. 23, 2011.
- K. A. Terrani, L. L. Snead, and J. C. Gehin, "Microencapsulated Fuel Technology for Commercial Light Water and Advanced Reactor Application," J. Nucl. Mater., 427, 209 (2012). https://doi.org/10.1016/j.jnucmat.2012.05.021
- K. A. Terrani, J. O. Kiggans, Y. Katoh, K. Shimoda, F. C. Montgomery, B. L. Armstrong, C. M. Parish, T. Hinoki, J. D. Hunn, and L. L. Snead, "Fabrication and Characterization of Fully Ceramic Microencapsulated Fuels," J. Nucl. Mater., 426, 268 (2012). https://doi.org/10.1016/j.jnucmat.2012.03.049
Cited by
- /SiC Composite Tubes vol.50, pp.6, 2013, https://doi.org/10.4191/kcers.2013.50.6.359
- /SiC Composites by X-Ray Computed Microtomography vol.50, pp.6, 2013, https://doi.org/10.4191/kcers.2013.50.6.378
- /SiC Composites Prepared by Hybrid Processes of CVI and PIP vol.51, pp.5, 2014, https://doi.org/10.4191/kcers.2014.51.5.430
- FEA Study on Hoop Stress of Multilayered SiC Composite Tube for Nuclear Fuel Cladding vol.51, pp.5, 2014, https://doi.org/10.4191/kcers.2014.51.5.435
- /SiC composites by selective thermal removal vol.14, pp.3, 2017, https://doi.org/10.1111/ijac.12618
- Analysis of Thermal Shock Behavior of Cladding with SiCf/SiC Composite Protective Films vol.29, pp.1, 2016, https://doi.org/10.7234/composres.2016.29.1.040
- Experimental phase diagram of SiC in CH3SiCl3–Ar–H2 system produced by fluidized bed chemical vapor deposition and its nuclear applications vol.31, pp.17, 2016, https://doi.org/10.1557/jmr.2016.274
- Thermal shock resistance and hoop strength of triplex silicon carbide composite tubes vol.14, pp.6, 2017, https://doi.org/10.1111/ijac.12753
- Physical and mechanical properties of SiC-CNTs nano-composites produced by a rapid microwave process vol.28, pp.12, 2017, https://doi.org/10.1007/s10854-017-6629-8
- Wettability of SiC and graphite by Co–Ta alloys: evaluation of the reactivity supported by thermodynamic calculations vol.52, pp.23, 2017, https://doi.org/10.1007/s10853-017-1448-0
- Evaluation of the Mechanical Properties of TRISO Particles Using Nanoindentation and Ring Compression Testing vol.57, pp.7, 2017, https://doi.org/10.1007/s11340-017-0277-z
- /SiC Cladding Tube pp.14381656, 2018, https://doi.org/10.1002/adem.201800773
- Evaluation of Silicon Carbide (SiC) for Deep Borehole Disposal Canister vol.16, pp.2, 2018, https://doi.org/10.7733/jnfcwt.2018.16.2.233