DOI QR코드

DOI QR Code

A Fixed Point Approach to the Stability of a Generalized Quadratic and Additive Functional Equation

  • Jin, Sun Sook (Department of Mathematics Education, Gongju National University of Education) ;
  • Lee, Yang-Hi (Department of Mathematics Education, Gongju National University of Education)
  • Received : 2011.04.14
  • Accepted : 2011.09.28
  • Published : 2013.06.23

Abstract

In this paper, we investigate the stability of the functional equation $$f(x+2y)-2f(x+y)+2f(x-y)-f(x-2y)=0$$ by using the fixed point theory in the sense of L. C$\breve{a}$dariu and V. Radu.

Keywords

References

  1. T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2(1950), 64-66. https://doi.org/10.2969/jmsj/00210064
  2. L. Cadariu and V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure Appl. Math., 4(2003), article 4.
  3. L. Cadariu and V. Radu, Fixed points and the stability of quadratic functional equations, An. Univ. Timisoara Ser. Mat.-Inform., 41(2003), 25-48.
  4. J. B. Diaz and B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 74(1968), 305-309. https://doi.org/10.1090/S0002-9904-1968-11933-0
  5. P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184(1994), 431-436. https://doi.org/10.1006/jmaa.1994.1211
  6. D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27(1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
  7. K. -W. Jun and H. -M. Kim, On the Hyers-Ulam stability of a generalized quadratic and additive functional equation, Bull. Korean Math. Soc., 42(2005), 133-148. https://doi.org/10.4134/BKMS.2005.42.1.133
  8. K. -W. Jun and H. -M. Kim, On the stability of a general quadratic functional equation and applications, J. Chungcheong Math. Soc., 17(2004), 57-75.
  9. K. -W. Jun and Y. -H. Lee, A generalization of the Hyers-Ulam-Rassias stability of the Pexiderized quadratic equations, II, Kyungpook Math. J., 47(2007), 91-103.
  10. K. -W. Jun Y. -H. Lee, and J. R. Lee, On the stability of a new Pexider type functional equation, J. Inequal. Appl., 2008, ID 816963, 22pages.
  11. G. -H. Kim, On the stability of functional equations with square-symmetric operation, Math. Inequal. Appl., 4(2001), 257-266.
  12. Y. -H. Lee, On the stability of the monomial functional equation, Bull. Korean Math. Soc., 45(2008), 397-403. https://doi.org/10.4134/BKMS.2008.45.2.397
  13. Y. H. Lee and K. W. Jun, A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation, J. Math. Anal. Appl., 238(1999), 305-315. https://doi.org/10.1006/jmaa.1999.6546
  14. Y. H. Lee and K. W. Jun, A generalization of the Hyers-Ulam-Rassias stability of Pexider equation, J. Math. Anal. Appl., 246(2000), 627-638. https://doi.org/10.1006/jmaa.2000.6832
  15. Y. H. Lee and K. W. Jun, A note on the Hyers-Ulam-Rassias stability of Pexider equation, J. Korean Math. Soc., 37(2000), 111-124.
  16. Y. H. Lee and K. W. Jun, On the stability of approximately additive mappings, Proc. Amer. Math. Soc., 128(2000), 1361-1369. https://doi.org/10.1090/S0002-9939-99-05156-4
  17. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72(1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
  18. I. A. Rus, Principles and applications of fixed point theory, Ed. Dacia, Cluj-Napoca 1979, (in Romanian).
  19. S. M. Ulam, A Collection of Mathematical Problems, Interscience, New York, 1960.