DOI QR코드

DOI QR Code

Performance Improvement of TIPS-pentacene OTFTs by blending with Polystyrene

절연고분자 polystyrene 혼합에 의한 TIPS-pentacene OTFT의 성능 개선

  • Kim, Jae Seon (Department of Electronics Engineering, Dong-A University) ;
  • Song, Chung Kun (Department of Electronics Engineering, Dong-A University)
  • Received : 2013.05.08
  • Published : 2013.07.25

Abstract

In this paper we analyzed the effects of polystyrene(PS) blended in TIPS-pentacene on the performance of OTFTs. With the various molecular weight and the content of PS the performance of TIPS-pentacene OTFTs was examined and the proper molecular weight and the content were extracted for the best results. With the molecular weight of 9,580 and 0.3 wt% of PS OTFTs produced the mobility of $1.0{\pm}0.19cm^2/V{\cdot}sec$, the subthreshold slope $0.22{\pm}0.05$ V/dec, the threshold voltage $-1.19{\pm}1.21$ V, the current on/of ratio $7.12{\pm}2.09{\times}10^6$. Additionally the suitable substrate temperature for ink jet printing of the blended TIPS-pentacene OTFTs was also extracted and it was $46^{\circ}C$.

본 논문에서는 절연 고분자 polystyrene(PS)을 TIPS-pentacene 용액에 혼합하여 OTFT를 제작하였고, PS의 분자량과 함량이 소자 성능에 미치는 영향을 분석하였다. 분자량 9,580의 PS가 분자량이 큰 것 보다 우수한 성능을 나타내었다. 그리고 함량은 0.3 wt%일 때 전계이동도는 $1.0{\pm}0.19cm^2/V{\cdot}sec$, 부문턱전압기울기는 $0.22{\pm}0.05$ V/dec, 문턱전압은 $-1.19{\pm}1.21$ V, 그리고 전류점멸비는 $7.12{\pm}2.09{\times}10^6$ 이었으며, PS를 혼합하지 않은 OTFT에 비하여 약 5배의 성능 개선이 있었다. 또한 잉크젯 공정에서 기판온도는 커피링을 제거하는 중요한 요소이며 PS를 혼합한 TIPS-pentacene의 적합한 온도는 $46^{\circ}C$로 확인되었다.

Keywords

References

  1. H. Klauk and Christine Dehm, "Pentacene organic transistors and ring oscillators on glass and on flexible polymeric substrates" Appl. Phys. Lett., vol. 82, no. 23, pp4175-4177, Jun 2003. https://doi.org/10.1063/1.1579870
  2. S.K. Park and D.A. Mourey, "High mobility solution processed 6,13-bis(triisopropyl-silylethy -nyl) pentacene organic thin film transistors" Appl. Phys. Lett., vol. 91, no. 6, pp063514, August, 2007. https://doi.org/10.1063/1.2768934
  3. S.H. Lee and S.K. Kwon, "High-performance thin -film transistor with 6,13-bis (triisopropyl-silyeth -ynyl) pentacene by inkjet printing", Organic Electronics, vol.9, no.5 pp721, October, 2008. https://doi.org/10.1016/j.orgel.2008.05.002
  4. S.K. Park and T.N. Jackson, "High Mobility Solution-Processed OTFTs", Electron Devices Meet. IEMD Tech. Dig. IEEE int., vol.5, no5, pp108, December, 2006.
  5. H. Moon and Z.Bao, "Synthesis, Crystal Structure, and Transistor Performance of Tetracene Derivatives", J. Am. Chem. Soc. vol. 126, no. 47, pp15322, November, 2004. https://doi.org/10.1021/ja045208p
  6. K. Ito and S. Tokito, "Oligo(2,6-anthrylene)s: Acene-Oligomer Approach for Organic Field- Effect Transistors", Angew. Chem., vol. 42, no. 10, pp1191, March, 2003.
  7. S.H. Kim and J.Jang, "High performance ink-jet printed diketopyrrolopyrrolebased copolymer thinfilm transistors using a solutionprocessed alumini -um oxide dielectric on a flexible substrate", J. Mater. Chem. C, vol. 1, pp2408, February, 2013. https://doi.org/10.1039/c3tc00718a
  8. J.S. Brooks and J.E. Anthony, "Electronic and optical properties of functionalized pentacene compounds in the solid state", Current Appl. Phys., vol.1, no. 4-5, pp301, November, 2001. https://doi.org/10.1016/S1567-1739(01)00028-1
  9. R. Hamilton and T.D. Anthopoulos, "High-perfor -mance Polymer-Small Molecule Blend Organic Transistors", Adv. Mater., vol. 21, no. 10-11, pp1166, March, 2009. https://doi.org/10.1002/adma.200801725
  10. J.A. Lim and K.W. Cho, "Self-Organization of Ink-jet-Printed Triisopropylsilylethynyl Pentacene via Evaporation-Induced Flows in a Drying Drople", Adv. Funct. Mater., vol. 18, no. 2, pp229 , January, 2008. https://doi.org/10.1002/adfm.200700859
  11. H. Minemawari and T. Hasegawa, "Inkjet printing of single-crystal films", Nature, vol. 475, no. 7356, pp364, July, 2011. https://doi.org/10.1038/nature10313
  12. G.S Ryu and C.K. Song, "Thermally Dried Ink-Jet Process for 6,13-Bis(triisopropylsilyle -thynyl)-Pentacene for High Mobility and High Uniformity on a Large Area Substrate" JJAP, vol. 51, no. 5, pp051601, May, 2012.
  13. K.J. Baeg and Y.Y. Noh, "Improved performance uniformity of inkjet printed n-channel organic field-effect transistors and complementary inverters" Organic Electronics, vol. 12, no. 4, pp634, April, 2011. https://doi.org/10.1016/j.orgel.2011.01.016
  14. M.B. Madec and S.G. Yeates, "Enhanced reproducibility of inkjet printed organic thin film transistors based on solution processable polymer-small molecule blends", J. Mater. Chem., vol. 20, pp9155, May, 2010. https://doi.org/10.1039/c0jm01614d
  15. K.D. Kim and C.K. Song, "Low-Voltage Organic Thin-Film Transistors Using a Hybrid Gate Dielectric Consisting of Aluminum Oxide and Poly(vinyl phenol)" JJAP, vol. 49, no. 11, pp111603, November, 2010.
  16. D.T. James and J.S. Kim, "Thin-Film Morphology of Inkjet-Printed Single-Droplet Organic Transistors Using Polarized Raman Spectroscopy: Effect of Blending TIPS-Pentacene with Insulating Polymer", ASC Nano, vol. 5, no. 12, pp9824, October, 2011. https://doi.org/10.1021/nn203397m