Abstract
The history of finding solutions of linear equations went back to some thousand years ago, and has been steadily developed to solve systems of higher degree polynomials. The method to eliminate variables came into use around the 17th and 18th century. This technique has been extended to the resultant theory that was laid in the 19th century by outstanding mathematicians as Euler, Sylvester, and B$\acute{e}$zout. In this paper we discuss the historical reflection about the development of solving system of polynomials. We add a special emphasis on E. B$\acute{e}$zout who gave the first account on the resultant which is a generalization of discriminant and Gauss elimination method.
본 논문에서 연립일차방정식의 풀이법 연구로부터 시작하여 연립고차방정식의 해법 연구로 발전되어가는 과정을 역사발생적 관점에서 고찰한다. 연립일차방정식을 푸는데 중요한 역할을 하는 가우스 소거법과 비교하여 상대적으로 덜 알려져 있지만, 연립고차방정식에는 오일러의 소거이론과 베조의 종결식이 있다. 이러한 발전의 역사적 과정을 알아보고 특별히 종결식을 처음으로 정의한 베조의 연구방법을 조명해 본다.