DOI QR코드

DOI QR Code

핀풀러 신뢰도 예측

Reliability Prediction of a Pin Puller

  • Lee, Hyo-Nam (Advanced Propulsion Technology Center, Agency for Defence Development) ;
  • Jang, Seung-Gyo (Advanced Propulsion Technology Center, Agency for Defence Development) ;
  • Oh, Jong-Yun (Advanced Propulsion Technology Center, Agency for Defence Development)
  • 투고 : 2013.04.18
  • 심사 : 2013.07.03
  • 발행 : 2013.08.01

초록

핀풀러의 신뢰도를 몬테카를로 시뮬레이션을 통해서 예측하였다. 예측방법은 응력-강도 간섭 모델에 근거한다. 이 모델은 강도가 응력보다 작을 경우를 고장으로 간주한다. 본 연구에서 강도는 핀을 예정된 거리까지 후퇴시키는데 필요한 에너지로, 응력은 이 핀의 운동을 방해하는데 소요되는 에너지로 간주하였다. 전자는 주로 화약량에 의해 결정되고 후자는 여러 가지 마찰력과 반발방지장치에서 소모되는 에너지에 의존한다. 응력과 강도 변수들은 해석적 성능 모델로부터 계산하였다. 본 연구에서 제시된 방법은 많은 시료가 필요하지 않기 때문에 유사한 종류의 파이로 장치 신뢰도 계산에도 적용될 수 있다.

Reliability of a pin puller was predicted by Monte Carlo simulation. The prediction method is based on the stress-strength interference model that failure occurs if the stress exceeds the strength. In this study, the strength is considered as the energy delivered by combustion of pyrotechnics to retreat the pin to a predetermined position, whereas the stress is regarded as the energy required to resist the pin movement. The former mainly depends on the amount of pyrotechnic charge and the latter is governed by several friction forces and the energy dissipation within locking mechanism. Both the variables of stress and strength were computed using an analytical performance model. The method presented here, not depending upon a large number of test item, can be applicable to predict the reliability of other kinds of pyrotechnic devices.

키워드

참고문헌

  1. Brauer, O., Handbook of Pyrotechnics, New York, 1974.
  2. Johnson, S.A., "Stress-Strength Models for Reliability," Handbook of Statistics, Vol.7(eds: Krishnaiah, P.R. and Rao, C.R.), North-Holland, Amsterdam, 1988, pp. 27-54.
  3. Kort, S., Lumelskii, Y. and Pensky, M., The Stress-Strength Model and its Generalizations, World Scientific, New Jersey, 2003.
  4. Jang, S.G., Lee, H.N. and Oh, J.Y., "Performance Modeling of a Pyrotechnically Actuated Pin Puller," Aerospace Science and Technology, Submitted, 2012.
  5. Rubinstein, R.Y., Simulation and the Monte Carlo Method, John Wiley& Sons, New York, Chap. 4, 2003.
  6. Keicecioglu, D.B., Robust Engineering Design-By-Reliability with Emphasis on Mechanical Components & Structural Reliability, DEStech Publications, USA, Chap.1 and 2, 2003.
  7. Lee, H.N. and Oh, J.Y., "Monte Carlo Simulation on Reliability of a Self-Separable Ejector for Man-Portable Missiles," Int'l J. of Aeronautical & Space Sci., Vol. 12, No. 4, 2011, pp. 385-395. https://doi.org/10.5139/IJASS.2011.12.4.385
  8. Fox, E.P. and Safie, F., "Statistical Characterization of Life Drivers for a Probabilistic Design Analysis," AIAA paper 92-3414, 1992.
  9. Haugen, E.B., "Modern Statistical Materials Selection," Materials Engineering, Vol. 96, 1982, pp. 21-25.
  10. Vinogradov, O., Introduction to Mechanical Reliability: A Designer's Approach, Hemisphere Publishing, New York, 1991, pp. 48.