DOI QR코드

DOI QR Code

Effect of Pore Size of Mesoporous Spherical Silica for the Purification of Paclitaxel from Plant Cell Cultures

식물세포배양으로부터 Paclitaxel 정제를 위한 메조다공성 실리카의 기공크기 영향

  • Oh, Hyeon-Jeong (Department of Chemical Engineering, Kongju National University) ;
  • Jung, Kyeong Youl (Department of Chemical Engineering, Kongju National University) ;
  • Kim, Jin-Hyun (Department of Chemical Engineering, Kongju National University)
  • 오현정 (공주대학교 화학공학부) ;
  • 정경열 (공주대학교 화학공학부) ;
  • 김진현 (공주대학교 화학공학부)
  • Received : 2013.05.02
  • Accepted : 2013.06.12
  • Published : 2013.06.27

Abstract

Four types of mesoporous spherical silica adsorbents with different physical properties were prepared by spray pyrolysis and were used for the purification of the anticancer agent paclitaxel from plant cell cultures. Pore size had a greater effect on the removal of plant-derived impurities during the pre-purification of paclitaxel compared with surface area and pore volume. An appropriate pore diameter (~9.07 nm) was required to achieve the highest purity (~46.1%) and yield (~82.3%) of paclitaxel. These results were confirmed by HPLC analysis of the absorbent after treatment and Thermogravimetric analysis of the organic substances bonded to the adsorbent.

분무열분해 공정에 의해 물리적 특성이 다른 네 종류의 메조 다공성 실리카를 제조하여 식물세포배양 유래 항암물질 paclitaxel 정제에 사용하였다. 실리카 흡착제의 물리적 특성에서 표면적과 기공부피 보다는 기공크기 (기공지름)이 흡착제 처리 효과에 많은 영향을 미침을 알 수 있었다. 특히 적절한 기공지름 (~9.07 nm)에서 가장 높은 순도 (~46.1%)와 수율 (~82.3%)의 paclitaxel을 얻을 수 있었다. 이러한 불순물 (타르 및 왁스 성분 포함) 제거 효과는 흡착제 처리 후 흡착제를 메탄올로 세척한 시료의 HPLC 분석 결과와 흡착제에 붙은 유기물의 TGA 정량 분석 결과로도 확인할 수 있었다.

Keywords

References

  1. Kim, J. H. (2006) Paclitaxel: recovery and purification in commercialization step. Korean J. Biotechnol. Bioeng. 21: 1-10.
  2. Rao, K. V., J. B. Hanuman, C. Alvarez, M. Stoy, J. Juchum, R. M. Davies, and R. Baxley (1995) A new large-scale process for taxol and related taxanes from Taxus brevifolia. Pharm. Res. 12: 1003- 1010. https://doi.org/10.1023/A:1016206314225
  3. Baloglu, E. and D. G. Kingston (1999) A new semisynthesis of paclitaxel from baccatin III. J. Nat. Prod. 62: 1068-1071. https://doi.org/10.1021/np990040k
  4. Georgiev, M. I., J. Weber, and A. Maciuk (2009) Bioprocessing of plant cell cultures for mass production of targeted compounds. Appl. Microbiol. Biotechnol. 83:809-823. https://doi.org/10.1007/s00253-009-2049-x
  5. Kolewe, M. E., V. Gaurav, and S. C. Roberts (2008) Pharmaceutically active natural product synthesis and supply via plant cell cul-ture technology. Mol. Pharm. 5: 243-256. https://doi.org/10.1021/mp7001494
  6. Kang, I. and J. H. Kim (2012) Effect of reactor type on the purification efficiency of paclitaxel in the increased surface area fractional precipitation process. Sep. Purif. Technol. 99: 14-19. https://doi.org/10.1016/j.seppur.2012.08.025
  7. Lee, J. Y. and J. H. Kim (2012) Evaluation of the effect of crude extract purity and pure paclitaxel content on the increased surface area fractional precipitation process for the purification of paclitaxel. Process Biochem. 47: 2388-2397. https://doi.org/10.1016/j.procbio.2012.09.023
  8. Sim H. A., J. Y. Lee, and J. H. Kim (2012) Evaluation of a high surface area acetone/pentane precipitation process for the purification of paclitaxel from plant cell cultures. Sep. Purif. Technol. 89: 112-116. https://doi.org/10.1016/j.seppur.2012.01.017
  9. Pyo, S. H., H. B. Park, B. K. Song, B. H. Han, and J. H. Kim (2004) A large-scale purification of paclitaxel from plant cell cultures of Taxus chinensis. Process Biochem. 39:1985-1991. https://doi.org/10.1016/j.procbio.2003.09.028
  10. Oh, H. J., H. R. Jang, K. Y. Jung, and J. H. Kim (2012) Evaluation of adsorbents for separation and purification of paclitaxel from plant cell cultures. Process Biochem. 47: 331-334. https://doi.org/10.1016/j.procbio.2011.11.004
  11. Gamborg, O. L., R. A. Miller, and K. Ojima (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50: 151-158. https://doi.org/10.1016/0014-4827(68)90403-5
  12. Choi, H. K., T. L. Adams, R. W. Stahlhut, S. I. Kim, J. H. Yun, B. K. Song, J. H. Kim, S. S. Hong, and H. S. Lee (1999) Method for mass production of taxol by semi-continuous culture with Taxus chinensis cell culture. US Patent 5,871,979.
  13. Han, M. G. and J. H. Kim (2012) Evaluation of a high surface area fractional precipitation process for the purification of paclitaxel from Taxus chinensis. Biotechnol. Bioproc. Eng. 17: 1018-1024. https://doi.org/10.1007/s12257-012-0056-8
  14. Gregg, S. J. and K. S. W. Sing (1982) Adsorption, surface area and porosity. 2nd ed., pp. 41-110, Academic Press, NY, USA.
  15. Lee, J. Y. and J. H. Kim (2013) Influence of crude extract purity and pure paclitaxel content on fractional precipitation for purification of paclitaxel. Sep. Purif. Technol. 103: 8-14. https://doi.org/10.1016/j.seppur.2012.10.004
  16. Pyo, S. H., B. K. Song, C. H. Ju, B. H. Han, and H. J. Choi (2005) Effects of adsorbent treatment on the purification of paclitaxel from cell cultures of Taxus chinensis and yew tree. Process Biochem. 40: 1113-1117. https://doi.org/10.1016/j.procbio.2004.03.004
  17. Hata, H., S. Saeki, T. Kimura, Y. Sugahara, and K. Kuroda (1999) Adsorption of taxol into ordered mesoporous silica with various pore diameters. Chem. Mater. 11: 1110-1119. https://doi.org/10.1021/cm981061n
  18. Hu, X., T. Hanaoka, K. Sakanishi, T. Shinagawa, S. Matsui, M. Tada, and T. Iwasaki (2007) Removal of tar model compounds produced from biomass gasification using activated carbons. J. Jpn. Inst. Energy 86: 707-711. https://doi.org/10.3775/jie.86.707

Cited by

  1. Isotherm, kinetic, and thermodynamic studies on the adsorption behavior of 10-deacetylpaclitaxel onto Sylopute vol.22, pp.5, 2017, https://doi.org/10.1007/s12257-017-0247-4
  2. 실로퓨트에 의한 Taxus chinensis 유래 7-에피-10-디아세틸파클리탁셀의 흡착에 대한 평형, 등온흡착식, 동역학 및 열역학적 특성 vol.58, pp.1, 2020, https://doi.org/10.9713/kcer.2020.58.1.113