DOI QR코드

DOI QR Code

Effects of Silkworm Gland Hydrolysate on Albumin-erythropoietin Production in Transgenic Chinese Hamster Ovary Cells

형질전환 Chinese Hamster Ovary 세포에서 Albumin-erythropoietin의 생산시 Silkworm Gland Hydrolysate의 효과

  • Choi, Min-Ho (Department of Biological Engineering, Inha University) ;
  • Cha, Hyun-Myoung (Department of Biological Engineering, Inha University) ;
  • Kim, Sun-Mi (Department of Applied Bioscience, CHA University) ;
  • Choi, Yong-Soo (Department of Applied Bioscience, CHA University) ;
  • Kim, Dong-Il (Department of Biological Engineering, Inha University)
  • 최민호 (인하대학교 공과대학 생물공학과) ;
  • 차현명 (인하대학교 공과대학 생물공학과) ;
  • 김선미 (차의과학대학교 생명과학대학 바이오공학과) ;
  • 최용수 (차의과학대학교 생명과학대학 바이오공학과) ;
  • 김동일 (인하대학교 공과대학 생물공학과)
  • Received : 2013.02.15
  • Accepted : 2013.03.12
  • Published : 2013.04.27

Abstract

To date, various strategies have been studied to increase specific productivity in Chinese hamster ovary (CHO) cell cultures. Also, albumin-fusion platform is being applied to other important bioactive peptides with short half-lives. Here, we investigated the effects of silkworm gland hydrolysate (SGH) on the production of albumin-erythropoietin (Alb-EPO) in transgenic CHO cells. The viable cell density of CHO cells was increased by 13% in the medium containing 1 mg/mL SGH higher than in the control medium without SGH. In addition, the production of Alb-EPO was also 1.26- fold enhanced by reducing the early apoptosis of CHO cells. In conclusion, SGH could be used as a useful supplement for the enhancement of recombinant protein production.

Keywords

References

  1. Brinks, V., A. Hawe, A. H. H. Basmeleh, L. Joachin-Rodriguez, R. Haselberg, G. W. Somsen, W. Jiskoot, and H. Schellekens (2011) Quality of original and biosimilar epoetin products. Pharm. Res. 28: 386-393. https://doi.org/10.1007/s11095-010-0288-2
  2. Constantinou, A., C. Chen, and M. P. Deonarain (2010) Modulating the pharmacokinetics of therapeutic antibodies. Biotechnol. Lett. 32: 609-622. https://doi.org/10.1007/s10529-010-0214-z
  3. Weikert, S., D. Papac, J. Briggs, D. Cowfer, S. Tom, M. Gawlitzek, J. Lofgren, S. Mehta, V. Chisholm, N. Modi, S. Eppler, K. Carroll, S. Chamow, D. Peers, P. Berman, and L. Krummen (1999) Engineering Chinese hamster ovary cells to maximize sialic acid content of recombinant glycoproteins. Nat. Biotechnol. 17: 1116-1121. https://doi.org/10.1038/15104
  4. Flintoff, W. F., M. K. Weber, C. R. Nagainis, A. K. Essani, D. Robertson, and W. Salser (1982) Overproduction of dihydrofolate reductase and gene amplification in methotrexate-resistant Chinese hamster ovary cells. Mol. Cell. Biol. 2: 275-285.
  5. Jenkins, N., L. Murphy, and R. Tyther (2008) Post-translational modifications of recombinant proteins: Significance for biopharmaceuticals. Mol. Biotechnol. 39: 113-118. https://doi.org/10.1007/s12033-008-9049-4
  6. Fike, R. (2010) Nutrient supplementation strategies for biopharmaceutical production, part 3: Scaling strategies for rapid nutrient supplement prototyping. Bioprocess International. 8: 24-31.
  7. Arden, N., and M. J. Betenbaugh (2004) Life and death in mammalian cell culture: Strategies for apoptosis inhibition. Trends Biotechnol. 22: 174-180. https://doi.org/10.1016/j.tibtech.2004.02.004
  8. Kim, E. J., H. J. Park, and T. H. Park (2003) Inhibition of apoptosis by recombinant 30K protein originating from silkworm hemolymph. Biochem. Biophys. Res. Commun. 308: 523-528. https://doi.org/10.1016/S0006-291X(03)01425-6
  9. Hwang, J. W., H. S. Lee, H. J. Kim, and Y. S. Choi (2012) Manufacture and characterization of silkworm gland hydrolysate. J. Seric. Entomol. Sci. 50: 76.
  10. Joung, C. H., J. Y. Shin, J. K. Koo, J. J. Lim, J. S. Wang, S. J. Lee, H. K. Tan, S. L. Kim, and S. M. Lim (2009) Production and characterization of long-acting recombinant human albumin-EPO fusion protein expressed in CHO cell. Protein Expr. Purif. 68: 137-145. https://doi.org/10.1016/j.pep.2009.07.003
  11. Yoon, S. K., and Y. H Ahn (2007) Effect of glycine betaine on follicle-stimulating hormone production by chinese hamster ovary cells at low culture temperature. Korean J. Biotechnol. Bioeng. 22: 109-113.
  12. Sunley, K., and M. Butler (2010) Strategies for the enhancement of recombinant protein production from mammalian cells by growth arrest. Biotechnol. Adv. 28: 385-394. https://doi.org/10.1016/j.biotechadv.2010.02.003
  13. Terada, S., T. Nishimura, M. Sasaki, H. Yamada, and M. Miki (2003) Sericin, a protein derived from silkworms, accelerates the proliferation of several mammalian cell lines including a hybridoma. Cytotechnology 40: 3-12.
  14. Takahashi, M., K. Tsujimoto, H. Yamada, H. Takagi, and S. Nakamori (2003) The silk protein, sericin, protects against cell death caused by acute serum deprivation in insect cell culture. Biotechnol. Lett. 25: 1805-1809. https://doi.org/10.1023/A:1026284620236
  15. Jing, Y., S. E. Egan, Y. Qian, M. C. Borys, N. R. Abu-Absi, and Z. J. Li (2011) Dextran sulfate inhibits staurosporine-induced apoptosis in Chinese hamster ovary (CHO) cells: Involvement of the mitochondrial pathway. Process Biochem. 46: 427-432. https://doi.org/10.1016/j.procbio.2010.09.015
  16. Han, K. O., K. S. Moon, J. Yang, C. Y. Ho, S. A. Ji, M. L. Jong, T. K. Ji, U. Y. Ji, and H. B. Tae (2005) Effect of N-acetylcystein on butyrate-treated chinese hamster ovary cells to improve the production of recombinant human interferon-$\beta$-1a. Biotechnol. Prog. 21: 1154-1164.

Cited by

  1. Whitening Effect of Storage Protein 2 from Silkworm Hemolymph vol.05, pp.09, 2014, https://doi.org/10.4236/abb.2014.59089