DOI QR코드

DOI QR Code

Potential Role of Genetic Engineering in Pest Management

해충관리에서 유전공학의 잠재적 역할

  • Kwon, Kisang (Department of Biomedical Laboratory Science, College of Health & Welfare, Kyungwoon University) ;
  • Kim, Bok Jo (Department of Biomedical Laboratory Science, College of Health & Welfare, Kyungwoon University) ;
  • Yu, Kweon (Neurophysiology Research Group, Korea Research Institute of Bioscience & Biotechnology) ;
  • Kwon, O-Yu (Department of Anatomy, College of Medicine, Chungnam National University)
  • 권기상 (경운대학교 임상병리학과) ;
  • 김복조 (경운대학교 임상병리학과) ;
  • 유권 (한국생명공학연구원) ;
  • 권오유 (충남대학교 의학전문대학원)
  • Received : 2013.07.05
  • Accepted : 2013.07.19
  • Published : 2013.07.30

Abstract

Genetic engineering, which was started by the E. coli gene manipulation, has led to rapid development in all area of life sciences. Recently, genetic engineering, which is an insertion or a removal technique of a specific gene on chromosomes, has been established and is usefully available in the applied life sciences including medicine and agriculture. In this review, we briefly explain pest management focusing on Release of Insects carrying a Dominant Lethal (RIDL) that is a highly economic and environment-friendly method of biological pest control. Although at present RIDL confronts many difficulties in applying directly in fields, it will be one of the best methods for the pest management in the near future without pesticides and disturbing ecosystem by the continued development of genetic engineering. However, these powerful techniques must be considered with great care to avoid harm to ecosystem.

유전공학은 대장균의 유전자조작으로부터 시작되어 지금은 생명과학전반에서 급속하게 발전하고 있다. 최근의 유전자조작기술은 특정유전자를 염색체 내에 넣고 빼고 하는 기술이 확립되어서 의학과 농학을 포함한 응용생명과학분야에서 유용하게 이용되고 있다. 본 리뷰에서는 높은 친환경성과 경제성을 가진 '지배적 치사곤충방사법'(Release of insects Carrying a Dominant Lethal: RIDL)을 중심으로 포괄적인 분자해충관리에 관하여 설명한다. 비록 현재로서는 RIDL을 직접 포장에 적용하기에는 아직 어려운 점이 많지만, 계속적인 유전공학기술의 발전을 통하여 농약을 사용하지 않고 생태계를 교란하지 않는 범위에서 사용될 수 있는 가장 좋은 해충관리방법 중의 한 가지가 될 것이다. 이때에 가장 고려할 점은 주위 환경교란부분에 많은 주의가 요구된다.

Keywords

References

  1. Alphey, L. S. 2002. Re-engineering the sterile insect technique. Insect Biochem Mol Biol 32, 1243-1247. https://doi.org/10.1016/S0965-1748(02)00087-5
  2. Bauser, C. A., Elick, T. A. and Fraser, M. J. 1996. Characterization of hitchhiker, a transposon insertion frequently associated with baculovirus FP mutants derived upon passage in the TN-368 cell line. Virology 216, 235-237. https://doi.org/10.1006/viro.1996.0053
  3. Bello, B., Resendez-Perez., D. and Gehring, W. J. 1998. Spatial and temporal targeting of gene expression in Drosophila by means of a tetracycline-dependent transactivator system. Development 125, 2193-2202.
  4. Berghammer, A. J., Klingler, M. and Wimmer, E. A. 1999. A universal marker for transgenic insects. Nature 402, 370-371. https://doi.org/10.1038/46463
  5. Bibikova, M., Golic, M., Golic, K. G. and Carroll, D. 2002. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161, 1169-1175.
  6. Brand, A. H. and Perrimon, N. 1993. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401-415.
  7. Cary, L. C., Goebel, M., Corsaro, B. G., Wang, H. G., Rosen, E. and Fraser, M. J. 1989. Transposon mutagenesis of baculoviruses: analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology 172, 156-169. https://doi.org/10.1016/0042-6822(89)90117-7
  8. Catteruccia, F., Nolan, T., Blass, C., Muller, H. M., Crisanti, A., Kafatos, F. C. and Loukeris, T. G. 2000. Toward Anopheles transformation: Minos element activity in anopheline cells and embryos. Proc Natl Acad Sci USA 97, 2157-2162. https://doi.org/10.1073/pnas.040568397
  9. Christophides, G. K. 2005. Transgenic mosquitoes and malaria transmission. Cell Microbiol 7, 325-333. https://doi.org/10.1111/j.1462-5822.2005.00495.x
  10. Coates, C. J., Jasinskiene, N., Miyashiro, L. and James, A. A. 1998. Mariner transposition and transformation of the yellow fever mosquito, Aedes aegypti. Proc Natl Acad Sci USA 95, 3748-3751. https://doi.org/10.1073/pnas.95.7.3748
  11. Cooley, L., Kelley, R. and Spradling, A. 1988. Insertional mutagenesis of the Drosophila genome with single P elements. Science 239, 1121-1128. https://doi.org/10.1126/science.2830671
  12. Dafa'alla, T. H., Condon, G. C., Condon, K. C., Phillips, C. E., Morrison, N. I., Jin, L., Epton, M. J., Fu, G. and Alphey, L. 2006. Transposon-free insertions for insect genetic engineering. Nat Biotechnol 24, 820-821. https://doi.org/10.1038/nbt1221
  13. Dietzl, G., Chen, D., Schnorrer, F., Su, K. C.,Barinova, Y., Fellner, M., Gasser, B., Kinsey, K., Oppel, S., Scheiblauer, S., Couto, A., Marra, V., Keleman, K. and Dickson, B. J. 2007. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448, 151-156. https://doi.org/10.1038/nature05954
  14. Fraser, S. E. and Bryant, P. J. 1985. Patterns of dye coupling in the imaginal wing disk of Drosophila melanogaster. Nature 317, 533-536. https://doi.org/10.1038/317533a0
  15. Fu, G., Condon, K. C., Epton, M.J., Gong, P., Jin, L., Condon, G. C., Morrison, N. I., Dafa'alla, T.H. and Alphey, L. 2007. Female-specific insect lethality engineered using alternative splicing. Nat Biotechnol 25, 353-357. https://doi.org/10.1038/nbt1283
  16. Gray, L. T., Fong, K. K., Pavelitz, T. and Weiner, A. M. 2012. Tethering of the conserved piggyBac transposase fusion protein CSB-PGBD3 to chromosomal AP-1 proteins regulates expression of nearby genes in humans. PLoS Genet 8, e1002972. https://doi.org/10.1371/journal.pgen.1002972
  17. Gong, P., Epton, M. J., Fu, G., Scaife, S., Hiscox, A., Condon, K. C., Condon, G. C., Morrison, N. I., Kelly, D. W., Dafa'alla, T., Coleman, P. G. and Alphey, L. 2005. A dominant lethal genetic system for autocidal control of the Mediterranean fruitfly. Nat Biotechnol 23, 453-456. https://doi.org/10.1038/nbt1071
  18. Handler, A. M. 2004. Understanding and improving transgene stability and expression in insects for SIT and conditional lethal release programs. Insect Biochem Mol Biol 34, 121-130. https://doi.org/10.1016/j.ibmb.2003.08.005
  19. Hediger, M., Niessen, M., Wimmer, E. A., Dubendorfer, A. and Bopp, D. 2001. Genetic transformation of the housefly Musca domestica with the lepidopteran derived transposon piggyBac. Insect Mol Biol 10, 113-119. https://doi.org/10.1046/j.1365-2583.2001.00243.x
  20. Hong, S. H., Lee, K. S., Kwak, S. J., Kim, A. K., Bai, H., Jung, M. S., Kwon, O. Y., Song, W. J., Tatar, M. and Yu, K. 2012. Minibrain/Dyrk1a regulates food intake through the Sir2-FOXO-sNPF/NPY pathway in Drosophila and mammals. PLoS Genet 8, e1002857. https://doi.org/10.1371/journal.pgen.1002857
  21. Horn, C., Jaunich, B. and Wimmer, E. A. 2000. Highly sensitive, fluorescent transformation marker for Drosophila transgenesis. Dev Genes Evol 210, 623-629. https://doi.org/10.1007/s004270000111
  22. Horn, C., Offen, N., Nystedt, S., Hacker, U. and Wimmer, E. A. 2003. piggyBac-based insertional mutagenesis and enhancer detection as a tool for functional insect genomics. Genetics 163, 647-661.
  23. Jacobson, J. W., Medhora, M. M. and Hartl, D. L. 1986. Molecular structure of a somatically unstable transposable element in Drosophila. Proc Natl Acad Sci USA 83, 8684-8688. https://doi.org/10.1073/pnas.83.22.8684
  24. Jasinskiene, N., Coates, C. J., Benedict, M. Q., Cornel, A. J., Rafferty, C. S., James, A. A. and Collins, F. H. 1998. Stable transformation of the yellow fever mosquito, Aedes aegypti, with the Hermes element from the housefly. Proc Natl Acad Sci USA 95, 3743-3747. https://doi.org/10.1073/pnas.95.7.3743
  25. Kuwayama, H., Yaginuma, T., Yamashita, O. and Niimi, T. 2006. Germ-line transformation and RNAi of the ladybird beetle, Harmonia axyridis. Insect Mol Biol 15, 507-512. https://doi.org/10.1111/j.1365-2583.2006.00665.x
  26. Lee, K. S., Kwon, O. Y., Lee, J. H., Kwon, K., Min, K. J., Jung, S. A., Kim, A. K., You, K. H., Tatar, M. and Yu, K. 2008. Drosophila short neuropeptide F signalling regulates growth by ERK-mediated insulin signalling. Nat Cell Biol 10, 468-475. https://doi.org/10.1038/ncb1710
  27. Loukeris, T. G., Arcà, B., Livadaras, I., Dialektaki, G. and Savakis, C. 1995. Introduction of the transposable element Minos into the germ line of Drosophila melanogaster. Proc Natl Acad Sci USA 92, 9485-9489. https://doi.org/10.1073/pnas.92.21.9485
  28. Loukeris, T. G., Livadaras, I., Arca, B., Zabalou, S. and Savakis, C. 1995. Gene transfer into the medfly, Ceratitis capitata, with a Drosophila hydei transposable element. Science 270, 2002-2005. https://doi.org/10.1126/science.270.5244.2002
  29. Michel, T., Reichhart, J.M., Hoffmann, J. A. and Royet, J. 2001. Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature 414, 756-759. https://doi.org/10.1038/414756a
  30. Miratul, M., Muqit, K. and Feany, M. B. 2002. Modelling neurodegenerative diseases in Drosophila: a fruitful approach? Nat Rev Neurosci 3, 237-243.
  31. Nolan, T., Papathanos, P., Windbichler, N., Magnusson, K., Benton, J., Catteruccia, F. and Crisanti, A. 2011. Developing transgenic Anopheles mosquitoes for the sterile insect technique. Genetica 139, 33-39. https://doi.org/10.1007/s10709-010-9482-8
  32. O'Brochta, D. A. 2005. Genetic manipulation of insects. Insect Biochem Mol Biol 3, 5647-648.
  33. O'Brochta, D. A., Atkinson, P. W. and Lehane, M. J. 2000. Transformation of Stomoxys calcitrans with a Hermes gene vector. Insect Mol Biol 9, 531-538. https://doi.org/10.1046/j.1365-2583.2000.00217.x
  34. Oliveira, S. G., Bao, W., Martins, C. and Jurka, J. 2012. Horizontal transfers of Mariner transposons between mammals and insects. Mob DNA 3, 14. https://doi.org/10.1186/1759-8753-3-14
  35. Pinkerton, A. C., Michel, K., O'Brochta, D.A. and Atkinson, P. W. 2000. Green fluorescent protein as a genetic marker in transgenic Aedes aegypti. Insect Mol Biol 9, 1-10. https://doi.org/10.1046/j.1365-2583.2000.00133.x
  36. Rong, Y. S. and Golic, K. G. 2000. Gene targeting by homologous recombination in Drosophila. Science 288, 2013-2018. https://doi.org/10.1126/science.288.5473.2013
  37. Roseman, R. R., Swan, J. M. and Geyer, P. K. 1995. A Drosophila insulator protein facilitates dosage compensation of the X chromosome min-white gene located at autosomal insertion sites. Development 121, 3573-3582.
  38. Rubin, G. M. and Spradling, A. C. 2006. Gene drive systems for insect disease vectors. Nat Rev Genet 7, 427-435. https://doi.org/10.1038/nrg1870
  39. Sajwan, S., Takasu, Y., Tamura, T., Uchino, K., Sezutsu, H. and Zurovec, M. 2013. Efficient disruption of endogenous Bombyx gene by TAL effector nucleases. Insect Biochem Mol Biol 43, 17-23. https://doi.org/10.1016/j.ibmb.2012.10.011
  40. Spradling, A. C. and Rubin, G. M. 1981. Drosophila genome organization: conserved and dynamic aspects. Annu Rev Genet 15, 219-264. https://doi.org/10.1146/annurev.ge.15.120181.001251
  41. Steven, P. S. and Fred, G. 1982. Gene drive systems for insect disease vectors. Genetic transformation of Drosophila with transposable element vectors. Science 218, 348-353. https://doi.org/10.1126/science.6289436
  42. Sumitani, M., Yamamoto, D. S., Oishi, K, Lee., J. M. and Hatakeyama, M. 2003. Germline transformation of the sawfly, Athalia rosae (Hymenoptera: Symphyta), mediated by a piggyBac-derived vector. Insect Biochem Mol Biol 33, 449-458. https://doi.org/10.1016/S0965-1748(03)00009-2
  43. Tamura, T., Thibert, C., Royer, C., Kanda, T., Abraham, E., Kamba, M., Komoto, N., Thomas, J. L., Mauchamp, B., Chavancy, G., Shirk, P., Fraser, M., Prudhomme, J. C. and Couble, P. 2000. Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nat Biotechnol 18, 81-84. https://doi.org/10.1038/71978
  44. Thomas, D. D., Donnelly, C. A., Wood, R. J. and Alphey, L. S. 2000. Insect population control using a dominant, repressible, lethal genetic system. Science 287, 2474-2476. https://doi.org/10.1126/science.287.5462.2474
  45. Venken, K. J., He, Y., Hoskins, R. A. and Bellen, H. J. 2006. P[acman]: a BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster. Science 314, 1747-1751. https://doi.org/10.1126/science.1134426
  46. Warren, R. W., Nagy, L., Selegue, J., Gates, J. and Carroll, S. 1994. Evolution of homeotic gene regulation and function in flies and butterflies. Nature 372, 458-461. https://doi.org/10.1038/372458a0
  47. Ward, T. W., Jenkins, M. S., Afanasiev, B. N., Edwards, M., Duda, B. A., Suchman, E., Jacobs-Lorena, M., Beaty, B. J. and Carlson, J. O. 2001. Aedes aegypti transducing densovirus pathogenesis and expression in Aedes aegypti and Anopheles gambiae larvae. Insect Mol Biol 10, 397-405. https://doi.org/10.1046/j.0962-1075.2001.00276.x
  48. Wimmer, E. A. 2003. Innovations: applications of insect transgenesis. Nat Rev Genet 4, 225-232.
  49. Woltjen, K., Michael, I. P., Mohseni, P., Desai, R., Mileikovsky, M., Hämäläinen, R., Cowling, R., Wang, W., Liu, P., Gertsenstein, M., Kaji, K., Sung, H. K. and Nagy, A. 2009. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458, 766-770. https://doi.org/10.1038/nature07863
  50. Xiong, Y., Burke, W. D.,Jakubczak, J. L. and Eickbush, T. H. 1988. Ribosomal DNA insertion elements R1Bm and R2Bm can transpose in a sequence specific manner to locations outside the 28S genes. Nucleic Acids Res 16, 10561-10573. https://doi.org/10.1093/nar/16.22.10561
  51. Yoshida, S., Shimada, Y., Kondoh, D., Kouzuma, Y., Ghosh, A. K., Jacobs-Lorena, M. and Sinden, R. E. 2007. Hemolytic C-type lectin CEL-III from sea cucumber expressed in transgenic mosquitoes impairs malaria parasite development. PLoS Pathog 3, e192. https://doi.org/10.1371/journal.ppat.0030192