DOI QR코드

DOI QR Code

Analysis of the Admittance Component for Digitally Controlled Single-Phase Bridgeless PFC Converter

  • Received : 2012.03.22
  • Published : 2013.07.20

Abstract

This paper analyzes the effect of the admittance component for the digitally controlled single-phase bridgeless power factor correction (PFC) converter. To do this, it is shown how the digital delay effects such as the digital pulse-width modulation (DPWM) and the computation delays restrict the bandwidth of the converter. After that, the admittance effect of the entire digital control system is analyzed when the bridgeless PFC converter which has the limited bandwidth is connected to the grid. From this, the waveform distortion of the input current is explained and the compensation method for the admittance component is suggested to improve the quality of the input current. Both the simulations and the experiments are performed to verify the analyses taken in this paper for the 1 kW bridgeless PFC converter prototype.

Keywords

References

  1. B. Singh, S. Singh, A. Chandra, and K. Al-Haddad, "Comprehensive study of single-phase AC-DC power factor corrected converters with high-frequency isolation," IEEE. Trans. Ind. Informat., Vol. 7, No. 4, pp. 540-556, Nov. 2011. https://doi.org/10.1109/TII.2011.2166798
  2. F. J. Azcondo, C. Branas, R. Casanueva, and S. Bracho, "Power-mode-controlled power-factor corrector for electronic ballast," IEEE Trans. Ind. Electron., Vol. 52, No. 1, pp. 56-65, Feb. 2005.
  3. Y.-C. Li and C.-L. Chen, "A novel single-stage high-power-factor AC-to-DC LED driving circuit with leakage inductance energy recycling," IEEE Trans. Ind. Electron., Vol. 59, No. 2, pp. 793-802, Feb. 2012. https://doi.org/10.1109/TIE.2011.2151817
  4. J.-M. Wang, S.-T. Wu, Y. Jiang, and H.-J. Chiu, "A Dual-Mode Controller for the Boost PFC Converter," IEEE Trans. Ind. Electron., Vol. 58, No. 1, pp. 369-372, Jan. 2011. https://doi.org/10.1109/TIE.2010.2051391
  5. B. A. Mather and D. Maksimovic, "A simple digital power-factor correction rectifier controller," IEEE Trans. Power Electron., Vol. 26, No. 1, pp. 9-19, Jan. 2011. https://doi.org/10.1109/TPEL.2010.2051458
  6. Y. Jang and M. M. Jovanovic, "A bridgeless PFC boost rectifier with optimized magnetic utilization," IEEE Trans. Power Electron., Vol. 24, No. 1, pp. 85-93, Jan. 2009. https://doi.org/10.1109/TPEL.2008.2006054
  7. P. Kong, S. Wang, and F. C. Lee, "Common mode EMI noise suppression for bridgeless PFC converters," IEEE Trans. Power Electron., Vol. 23, No. 1, pp. 291-297, Jan. 2008. https://doi.org/10.1109/TPEL.2007.911877
  8. F. Musavi, W. Eberle, and W. G. Dunford, "A high-performance single-phase bridgeless interleaved PFC converter for plug-in hybrid electric vehicle battery chargers," IEEE Trans. Ind. Applicat., Vol. 47, No. 4, pp. 1833-1843, Jul./Aug. 2011. https://doi.org/10.1109/TIA.2011.2156753
  9. A. Prodic, "Compensator design and stability assessment for fast voltage loops of power factor correction rectifiers," IEEE Trans. Power Electron., Vol. 22, No. 5, pp. 1719-1730, Sep. 2007. https://doi.org/10.1109/TPEL.2007.904205
  10. N. Genc and I. Iskender, "DSP-based current sharing of average current controlled two-cell interleaved boost power factor converter," IET Power Electron., Vol. 4, No. 9, pp. 1015-1022, 2011. https://doi.org/10.1049/iet-pel.2010.0349
  11. W. Zhang, G. Feng, Y. -F. Liu, and B. Wu, "a digital power factor correction (PFC) control strategy optimized for DSP", IEEE Trans. Power Electron., Vol. 19, No. 6, pp. 1474-1485, Nov. 2004. https://doi.org/10.1109/TPEL.2004.836675
  12. S. F. Lim and A. M. Khambadkone, "A simple digital DCM control scheme for boost PFC operating in both CCM and DCM," IEEE Trans. Ind. Applicant., Vol. 47, No. 4, pp. 1802-1812, Jul./Aug. 2011. https://doi.org/10.1109/TIA.2011.2153815
  13. F.-Z. Chen and D. Maksimovic, "Digital control for improved efficiency and reduced harmonic distortion over wide load range in boost PFC rectifiers," IEEE Trans. Power Electron., Vol. 25, No. 10, pp. 2683-2692, Oct. 2010. https://doi.org/10.1109/TPEL.2010.2050702
  14. K. D. Gusseme, D. M. Van de Sype, A. P. Van. den Bossche, and J. A. Melkebeek, "Input-Current Distortion of CCM Boost PFC Converters Operated in DCM," IEEE Trans. Ind. Electron., Vol. 54, No. 2, pp.858-865, Apr. 2007. https://doi.org/10.1109/TIE.2007.892252
  15. K. D. Gusseme, D. M. Van de Sype, A. P. Van den Bossche, and J. A. Melkebeek, "Digitally controlled boost power-factor-correction converters operating in both continuous and discontinuous conduction mode," IEEE Trans. Ind. Electron., Vol. 52, No. 1, pp. 88-97, Feb. 2005. https://doi.org/10.1109/TIE.2004.841133
  16. J. Zou, X. Ma, and C. Du, "Asymmetrical oscillations in digitally controlled power-factor-correction boost converters," IEEE Trans. Circuits Syst. II, Exp. Briefs., Vol. 56, No. 3, pp. 230-234, Mar. 2009. https://doi.org/10.1109/TCSII.2008.2011597
  17. D. M. Van de Sype, K. D. Gusseme, A. P. Van den Bossche, and J. A. Melkebeek, "Duty-ratio feedforward for digitally controlled boost PFC converters," IEEE Trans. Ind. Electron., Vol. 52, No. 1, pp. 108-115, Feb. 2005. https://doi.org/10.1109/TIE.2004.841127
  18. M. Chen and J. Sun, "Feedforward current control of boost single-phase PFC converters," IEEE Trans. Power Electron., Vol. 21, No. 2, pp. 338-345, Mar. 2006. https://doi.org/10.1109/TPEL.2005.869746
  19. S.-Y. Park, C.-L. Chen, J.-S. Lai, and S.-R. Moon, "Admittance compensation in current loop control for a grid-tie LCL fuel cell inverter," IEEE Trans. Power Electron., Vol. 23, No. 4, pp. 1716-1723, Jul. 2008. https://doi.org/10.1109/TPEL.2008.924828
  20. S.-Y. Park, C.-L. Chen, and J.-S. Lai, "A wide-range active and reactive power flow controller for a solid oxide fuel cell power conditioning system," IEEE Trans. Power Electron., Vol. 23, No. 6, pp. 2703-2709, Nov. 2008. https://doi.org/10.1109/TPEL.2008.2003959
  21. K. P. Louganski and J. -S. Lai, "Current phase lead compensation in single-phase PFC boost converters with a reduced switching frequency to line frequency ratio," IEEE Trans. Power Electron., Vol. 22, No. 1, pp. 113-119, Jan. 2007. https://doi.org/10.1109/TPEL.2006.886656
  22. D. M. Van de Sype, K. D. Gusseme, F. M. L. L. De Belie, A. Van den Bossche, and J. A. Melkebeek, "Small-signal z-domain analysis of digitally controlled converters," IEEE Trans. Power Electron., Vol. 21, No. 2, pp. 470-478, Mar. 2006. https://doi.org/10.1109/TPEL.2005.869758
  23. P. Mattavelli, G. Spiazzi, and P. Tenti, "Predictive digital control of power factor preregulators with input voltage estimation using disturbance observers," IEEE Trans. Power Electron., Vol. 20, No. 1, pp. 140-147, Jan. 2005. https://doi.org/10.1109/TPEL.2004.839821
  24. Y. Cho, H. Miwa, and J.-S. Lai, "A digital single-loop control of multiphase DC-dc converter for fuel cell powered truck auxiliary power unit," IEEE 8th ICPE-ECCE ASIA, pp. 2261-2266, 2011.
  25. H. D. Venable, "The K factor: a new mathematical tool for stability analysis and systems," Available: http://icwic.cn/icwic/data/pdf/cd/cd057/Switching,%20DC -DC%20Regulator,%20Controller/1184.pdf.

Cited by

  1. Scheme to Improve the Line Current Distortion of PFC Using a Predictive Control Algorithm vol.15, pp.5, 2015, https://doi.org/10.6113/JPE.2015.15.5.1168
  2. A Single-Loop Repetitive Voltage Controller with an Active Damping Control Technique vol.10, pp.5, 2017, https://doi.org/10.3390/en10050673
  3. Study on the energy savings in the mobile communication repeater using a power factor correction circuit vol.18, pp.8, 2014, https://doi.org/10.6109/jkiice.2014.18.8.1854