DOI QR코드

DOI QR Code

Effect of Valence Electron Concentration on Elastic Properties of 4d Transition Metal Carbides MC (M = Y, Zr, Nb, and Rh)

  • Received : 2013.03.29
  • Accepted : 2013.04.30
  • Published : 2013.07.20

Abstract

The electronic structure and elastic properties of the 4d transition metal carbides MC (M = Y, Zr, Nb, Rh) were studied by means of extended H$\ddot{u}$ckel tight-binding band electronic structure calculations. As the valence electron population of M increases, the bulk modulus of the MC compounds in the rocksalt structure does not increase monotonically. The dominant covalent bonding in these compounds is found to be M-C bonding, which mainly arises from the interaction between M 4d and C 2p orbitals. The bonding characteristics between M and C atoms affecting the variation of the bulk modulus can be understood on the basis of their electronic structure. The increasing bulk modulus from YC to NbC is associated with stronger interactions between M 4d and C 2p orbitals and the successive filling of M 4d-C 2p bonding states. The decreased bulk modulus for RhC is related to the partial occupation of Rh-C antibonding states.

Keywords

References

  1. Dunand, A.; Flack, H. D.; Yvon, K. Phys. Rev. B 1985, 31, 2299. https://doi.org/10.1103/PhysRevB.31.2299
  2. Blaha, P.; Redinger, J.; Schwarz, K. Phys. Rev. B 1985, 31, 2316. https://doi.org/10.1103/PhysRevB.31.2316
  3. Price, D. L.; Cooper, B. R. Phys. Rev. B 1989, 39, 4945. https://doi.org/10.1103/PhysRevB.39.4945
  4. Sigalas, M.; Papaconstantopoulos, D. A.; Bacalis, N. C. Phys. Rev. B 1992, 45, 5777. https://doi.org/10.1103/PhysRevB.45.5777
  5. Haglund, J.; Grimvall, G.; Jarlborg, T.; Fernandez Guillermet, A. Phys. Rev. B 1991, 43, 14400. https://doi.org/10.1103/PhysRevB.43.14400
  6. Haglund, J.; Fernandez Guillermet, A.; Grimvall, G. Phys. Rev. B 1993, 48, 11685. https://doi.org/10.1103/PhysRevB.48.11685
  7. Grossman, J. C.; Mizel, A.; Cote, M.; Cohen, M. L.; Louie, S. G. Phys. Rev. B 1999, 60, 6343. https://doi.org/10.1103/PhysRevB.60.6343
  8. Vines, F.; Sousa, S.; Liu, P.; Rodriguez, J. A.; Illas, F. J. Chem. Phys. 2005, 122, 174709. https://doi.org/10.1063/1.1888370
  9. Das, T.; Deb, S.; Mookerjee, A. Physica B 2005, 367, 6. https://doi.org/10.1016/j.physb.2005.05.041
  10. Toth, L. E. Transition Metal Carbides and Nitrides; Academic: New York, 1971.
  11. Eberhart, M. E.; MacLaren, J. M. In The Chemistry of Transition Metal Carbides and Nitrides; Oyama, S. T., Ed.; Blackie Academic and Professional: London, 1996.
  12. Pierson, H. O. Handbook of Refractory Carbides and Nitrides: Properties, Characterization, Processing and Applications; Noyes Publications: Westwood, New York, 1996.
  13. Fernandez Guillermet, A.; Haglund, J.; Grimvall, G. Phys. Rev. B 1992, 45, 11557. https://doi.org/10.1103/PhysRevB.45.11557
  14. Fernandez Guillermet, A.; Haglund, J.; Grimvall, G. Phys. Rev. B 1993, 48, 11673. https://doi.org/10.1103/PhysRevB.48.11673
  15. Nakamura, K.; Yashima, M. Mater. Sci. Eng. B 2005, 148, 69.
  16. Johansson, L. I. Surf. Sci. Rep. 1995, 21, 177. https://doi.org/10.1016/0167-5729(94)00005-0
  17. Whangbo, M.-H.; Hoffmann, R. J. Am. Chem. Soc. 1978, 100, 6093. https://doi.org/10.1021/ja00487a020
  18. Whangbo, M.-H.; Hoffmann, R.; Woodward, R. B. Proc. R. Soc. A 1979, 366, 23. https://doi.org/10.1098/rspa.1979.0037
  19. Korir, K. K.; Amolo, G. O.; Makau, N. W.; Joubert, D. P. Diamond Relat. Mater. 2011, 20, 157. https://doi.org/10.1016/j.diamond.2010.11.021
  20. Pauling, L. The Nature of the Chemical Bond; Cornell University Press: Ithaca, New York, 1960.

Cited by

  1. Prediction of physical properties of XO (X = Am, Cd, Mg, Zr) compounds using density functional theory vol.131, pp.7, 2016, https://doi.org/10.1140/epjp/i2016-16239-7
  2. Elastic and Electronic Properties of Point Defects in Titanium Carbide vol.57, pp.6, 2013, https://doi.org/10.5012/jkcs.2013.57.6.677
  3. Unconventional superconductivity in 3d rocksalt transition metal carbides vol.7, pp.40, 2013, https://doi.org/10.1039/c9tc03793d
  4. Waste Recycling in Thermoelectric Materials vol.10, pp.19, 2013, https://doi.org/10.1002/aenm.201904159