DOI QR코드

DOI QR Code

Investigation of Low-Cost, Simple Recycling Process of Waste Thermoelectric Modules Using Chemical Reduction

  • Received : 2013.03.22
  • Accepted : 2013.05.10
  • Published : 2013.07.20

Abstract

A low-cost and simple recycling process of waste thermoelectric modules has been investigated using chemical reduction methods. The recycling is separated by two processes, such as dissolving and reduction. When the waste thermoelectric chips are immersed into a high concentration of $HNO_3$ aqueous solution at $100^{\circ}C$, oxide powders, e.g., $TeO_2$ and $Sb_2O_3$, are precipitated in the $Bi^{3+}$ and $HTeO{_2}^+$ ions contained solution. By employing a reduction process with the ions contained solutions, $Bi_2Te_3$ nanoparticles are successfully synthesized. Due to high reduction potential of $HTeO{_2}^+$ to Te, Te elements are initially formed and subsequently $Bi_2Te_3$ nanoparticles are formed. The average particle size of $Bi_2Te_3$ was calculated to be 25 nm with homogeneous size distribution. On the other hand, when the precipitated powders reduced by hydrazine, $Sb_2O_3$ and Te nanoparticles are synthesized because of higher reduction potentials of $TeO_2$ to Te. After the washing step, the $Sb_2O_3$ are clearly removed, results in Te nanoparticles.

Keywords

References

  1. Heo, P.; Hagiwara, K.; Ichino, R.; Okido, M. J. Electrochem. Soc. 2006, 153, C213. https://doi.org/10.1149/1.2168378
  2. Tittes, K.; Bund, A.; Plieth, W.; Bentien, A.; Paschen, S.; Plotner, M.; Grafe, H.; Fischer, W. J. J. Solid. State. Electrochem. 2003, 7,714. https://doi.org/10.1007/s10008-003-0378-8
  3. Zhou, J.; Jin, C.; Seol, J. H.; Li, X.; Shi, L. Appl. Phys. Lett. 2005, 87, 133109. https://doi.org/10.1063/1.2058217
  4. Scheele, M.; Oeschler, N.; Meier, K.; Kornowski, A.; Klinke, C.; Weller, H. Adv. Funct. Mater. 2009, 19, 3476. https://doi.org/10.1002/adfm.200901261
  5. Cao, Y.; Zhao, X.; Zhu, T.; Zhang, X.; Tu, J. Appl. Phys. Lett. 2008, 92, 143106. https://doi.org/10.1063/1.2900960
  6. Hicks, L.; Dresselhaus, M. Phys. Rev. B: Condens. Matter. 1993, 47, 16631. https://doi.org/10.1103/PhysRevB.47.16631
  7. Hsu, K. F.; Loo, S.; Guo, F.; Chen, W.; Dyck, J. S.; Uher, C. Hogan, T.; Polychroniadis, E. K.; Kanatzidis, M. G. Science 2004, 303, 818. https://doi.org/10.1126/science.1092963
  8. Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y.; Minnich, A.; Yu, B.; Yan, X.; Wang, D.; Muto, A.; Vashaee, D.; Chen, X.; Liu, J.; Dresselhaus, M. S.; Chen, G.; Ren, Z. Science 2008, 320, 634. https://doi.org/10.1126/science.1156446
  9. Humphrey, T.; Linke, H. Phys. Rev. Lett. 2005, 94, 96601. https://doi.org/10.1103/PhysRevLett.94.096601
  10. Li, D.; Wu, Y.; Kim, P.; Shi, L.; Yang, P.; Majumdar, A. Appl. Phys. Lett. 2003, 83, 2934. https://doi.org/10.1063/1.1616981
  11. Son, J. S.; Choi, M.; Han, M. K.; Park, K. S.; Kim, J. Y.; Lim, S. J.; Oh, M. H.; Kuk, Y.; Park, C.; Kim, S. J.; Hyeon, T. H. Nano Lett. 2012, 12, 640. https://doi.org/10.1021/nl203389x
  12. Park, J.; An, K.; Hwang, Y.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.; Hwang, N.; Hyeon, T. H. Nat. Mater. 2004, 3, 891. https://doi.org/10.1038/nmat1251
  13. Salavati-Niasari, M.; Bazarganipour, M.; Davar, F. J. Alloy Compd. 2010, 489, 530. https://doi.org/10.1016/j.jallcom.2009.09.101
  14. Leem, K. J.; Song, H.; Lee, Y. I.; Jung, H.; Zhang, M.; Choa, Y. H.; Myung, N. V. Chem. Commun. 2011, 47, 9107. https://doi.org/10.1039/c1cc12312b
  15. Wang, W.; Goebl, J.; He, L.; Aloni, S.; Hu, Y.; Zhen, L.; Yin, Y. J. Am. Chem. Soc. 2010, 132, 17316. https://doi.org/10.1021/ja108186w
  16. Hayes, P. C. Process Principles in Minerals and Materials Production; Hayes Publishing Co.: 2003.

Cited by

  1. A recycling process for thermoelectric devices developed with the support of statistical entropy analysis vol.159, pp.None, 2013, https://doi.org/10.1016/j.resconrec.2020.104843