DOI QR코드

DOI QR Code

Theoretical Calculations of Infrared Bands of CH3+ and CH5+

  • Matin, Mohammad A. (Department of Nanomaterials Engineering, Pusan National University) ;
  • Jang, Joonkyung (Department of Nanomaterials Engineering, Pusan National University) ;
  • Park, Seung Min (Department of Chemistry and Research Center for New Nano Bio Fusion Technology, Kyung Hee University)
  • Received : 2013.03.25
  • Accepted : 2013.04.11
  • Published : 2013.07.20

Abstract

Existing theoretical calculations predict that infrared spectra of the two most fundamental reactive carbo-ions, methyl cation $CH{_3}^+$ with $D_{3h}$ symmetry and protonated methyl cation $CH{_5}^+$ with $C_s(I)$, $C_s(II)$, and $C_{2v}$ symmetries, appear together in the 7-${\mu}m$ region corresponding to the C-H bending modes. Vibrational band profiles of $CH{_3}^+$ and $CH{_5}^+$ have been compared by ab initio calculation methods that use the basis sets of MP2/aug-cc-pVTZ and CCSD(T)/cc-pVTZ. Our results indicate that the bands of rotation-vibration transitions of $CH{_3}^+$ and $CH{_5}^+$ should overlap not only in the 3-${\mu}m$ region corresponding to the C-H stretching modes but also in the 7-${\mu}m$ region corresponding to the C-H bending modes. Five band intensities of $CH{_5}^+$ among fifteen vibrational transitions between 6 and 8 ${\mu}m$ region are stronger than those of the ${\nu}_2$ and ${\nu}_4$ bands in $CH{_3}^+$. Ultimate near degeneracy of the two bending vibrations ${\nu}_2$ and ${\nu}_4$ of $CH{_3}^+$along with the stronger intensities of $CH{_5}^+$ in the three hydrogen scrambling structures may cause extreme complications in the analysis of the high-resolution carbo-ion spectra in the 7-${\mu}m$ region.

Keywords

References

  1. Herbst, E.; Klemperer, W. Astrophys. J. 1973, 185, 505. https://doi.org/10.1086/152436
  2. Geballe, T. R.; Oka, T. Nature 1996, 384, 334. https://doi.org/10.1038/384334a0
  3. Smith, D. Phil. Trans. R. Soc. Lond., A 1987, 323, 269. https://doi.org/10.1098/rsta.1987.0110
  4. Rosslein, M.; Gabrys, C. M.; Jagod, M.-F.; Oka, T. J. Mol. Spectrosc. 1992, 153, 738. https://doi.org/10.1016/0022-2852(92)90508-L
  5. Crofton, M. W.; Jagod, M.-F.; Rehfuss, B. D.; Kreiner, W. A.; Oka, T. J. Chem. Phys. 1988, 88, 666. https://doi.org/10.1063/1.454194
  6. Jagod, M.-F.; Gabrys, C. M.; Rösslein, M.; Uy, D.; Oka, T. Can. J. Phys. 1994, 72, 1192. https://doi.org/10.1139/p94-153
  7. White, E. T.; Tang, J.; Oka, T. Science 1999, 284, 135. https://doi.org/10.1126/science.284.5411.135
  8. Asvany, O.; Kumar, P.; Redlich, P. B.; Hegemann, I.; Schlemmer, S.; Marx, D. Science 2005, 309, 1219. https://doi.org/10.1126/science.1113729
  9. Huang, X.; McCoy, A. B.; Bowman, J. M.; Johnson, L. M.; Savage, C.; Dong, F.; Nesbitt, D. J. Science 2006, 311, 60. https://doi.org/10.1126/science.1121166
  10. Herzberg, G.; Shoosmith, J. Can. J. Phys. 1956, 34, 523. https://doi.org/10.1139/p56-059
  11. Dyke, J.; Jonathan, N.; Lee, E.; Morris, A. J. Chem. Soc. Faraday Trans. II 1976, 72, 1385. https://doi.org/10.1039/f29767201385
  12. Liu, X.; Gross, R. L.; Suits, A. G. Science 2001, 294, 2527. https://doi.org/10.1126/science.1066595
  13. Yua, H.-G.; Sears, T. J. J. Chem. Phys. 2002, 117, 666. https://doi.org/10.1063/1.1483852
  14. Cunha de Miranda, B. K.; Alcaraz, C.; Elhanine, M.; Noller, B.; Hemberger, P.; Fischer, I.; Garcia, G. A.; Soldi-Lose, H.; Gans, B.; Mendes, L. A.; Boye-Peronne, S.; Douin, S.; Zabka, J.; Botschwina, P. J. Phys. Chem. A 2010, 114, 4818. https://doi.org/10.1021/jp909422q
  15. Hinkle, C. E.; McCoy, A. B. J. Phys. Chem. A 2012, 116, 4687. https://doi.org/10.1021/jp3014157
  16. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, revision B.02; Gaussian, Inc.: Wallingford, CT, 2010.
  17. Jin, Z.; Braams, B. J.; Bowman, J. M. J. Phys. Chem. A 2006, 110, 1569. https://doi.org/10.1021/jp053848o
  18. Olkhov, R. V.; Nizkorodov, S. A.; Dopfer, O. J. Chem. Phys. 1999, 110, 9527. https://doi.org/10.1063/1.478917
  19. Brown, A.; McCoy, A. B.; Braams, B. J.; Jin, Z.; Bowman, J. M. J. Chem. Phys. 2004, 121, 4105. https://doi.org/10.1063/1.1775767