DOI QR코드

DOI QR Code

Identification of Potent Leukocyte Common Antigen-Related Phosphatase Inhibitors via Structure-Based Virtual Screening

  • Park, Hwangseo (Department of Bioscience and Biotechnology, Sejong University) ;
  • Pham, Ngoc Chien (Department of Bioengineering, Hanyang University) ;
  • Chun, Ha-Jung (Department of Radiation Oncology, College of Medicine, Hanyang University) ;
  • Ryu, Seong Eon (Department of Bioengineering, Hanyang University)
  • Received : 2013.03.14
  • Accepted : 2013.04.03
  • Published : 2013.07.20

Abstract

Leukocyte common antigen-related phosphatase (LAR) has been considered a promising target for the development of therapeutics for neurological diseases. Here, we report the first example for a successful application of the structure-based virtual screening to identify the novel small-molecule LAR inhibitors. Five of these inhibitors revealed micromolar inhibitory activities with the associated $IC_{50}$ values ranging from 2 to 6 ${\mu}M$. Because the newly identified inhibitors were also screened for having desirable physicochemical properties as a drug candidate, they may serve as a starting point of the structure-activity relationship study to optimize the medical efficacy. Structural features relevant to the stabilization of the new inhibitors in the active site of LAR are discussed in detail.

Keywords

References

  1. Silver, J.; Miller, J. H. Nat. Rev. Neurosci. 2004, 5, 146. https://doi.org/10.1038/nrn1326
  2. Rhodes, K. E.; Fawcett, J. W. J. Anat. 2004, 204, 33. https://doi.org/10.1111/j.1469-7580.2004.00261.x
  3. Sherman, L. S.; Back, S. A. Trends Neurosci. 2008, 31, 44. https://doi.org/10.1016/j.tins.2007.11.001
  4. Cafferty, W. B.; Bradbury, E. J.; Lidierth, M.; Jones, M.; Duffy, P. J.; Pezet, S.; McMahon, S. B. J. Neurosci. 2008, 28, 11998. https://doi.org/10.1523/JNEUROSCI.3877-08.2008
  5. Houle, J. D.; Tom, V. J.; Mayes, D.; Wagoner, G.; Phillips, N.; Silver, J. J. Neurosci. 2006, 26, 7405. https://doi.org/10.1523/JNEUROSCI.1166-06.2006
  6. Tester, N. J.; Howland, D. R. Exp. Neurol. 2008, 209, 483. https://doi.org/10.1016/j.expneurol.2007.07.019
  7. Fisher, D.; Xing, B.; Dill, J.; Li, H.; Hoang, H. H.; Zhao, Z.; Yang, X. L.; Bachoo, R.; Cannon, S.; Longo, F. M.; Sheng, M.; Silver, J.; Li, S. J. Neurosci. 2011, 31, 14051. https://doi.org/10.1523/JNEUROSCI.1737-11.2011
  8. Biersmith, B. H.; Hammel, M.; Geisbrecht, E. R.; Bouyain, S. J. Mol. Biol. 2011, 408, 616. https://doi.org/10.1016/j.jmb.2011.03.013
  9. Dunah, A. W.; Hueske, E.; Wyszynski, M.; Hoogenraad, C. C.; Jaworski, J.; Pak, D. T.; Simonetta, A.; Liu, G.; Sheng, M. Nat. Neurosci. 2005, 8, 458.
  10. Yang, T.; Massa, S. M.; Longo, F. M. J. Neurobiol. 2006, 66, 1420. https://doi.org/10.1002/neu.20291
  11. Nam, H.-J.; Poy, F.; Krueger, N. X.; Saito, H.; Frederick, C. A. Cell 1999, 97, 449. https://doi.org/10.1016/S0092-8674(00)80755-2
  12. Ling, Q.; Huang, Y.; Zhou, Y.; Cai, Z.; Xiong, B.; Zhang, Y.; Ma, L.; Wang, X.; Li, X.; Li, J.; Shen, J. Bioorg. Med. Chem. 2008, 16, 7399. https://doi.org/10.1016/j.bmc.2008.06.014
  13. Yang, X. N.; Li, J. Y.; Zhou, Y. Y.; Shen, Q.; Chen, J. W.; Li, J. Biochim. Biophys. Acta 2005, 1726, 34. https://doi.org/10.1016/j.bbagen.2005.07.001
  14. Shoichet, B. K.; Leach, A. R.; Kuntz, I. D. Proteins 1999, 34, 4. https://doi.org/10.1002/(SICI)1097-0134(19990101)34:1<4::AID-PROT2>3.0.CO;2-6
  15. Jeffrey, G. A. An Introduction to Hydrogen Bonding; Oxford University Press: Oxford, 1997.
  16. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Adv. Drug Delivery Rev. 1997, 23, 3. https://doi.org/10.1016/S0169-409X(96)00423-1
  17. Gasteiger, J.; Marsili, M. Tetrahedron 1980, 36, 3219. https://doi.org/10.1016/0040-4020(80)80168-2
  18. Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J. J. Comput. Chem. 1998, 19, 1639. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
  19. Park, H.; Lee, J.; Lee, S. Proteins 2006, 65, 549. https://doi.org/10.1002/prot.21183
  20. Park, H.; Jeon, J. H. Phys. Rev. E 2007, 75, 021916. https://doi.org/10.1103/PhysRevE.75.021916
  21. Stouten, P. F. W.; Frömmel, C.; Nakamura, H.; Sander, C. Mol. Simul. 1993, 10, 97. https://doi.org/10.1080/08927029308022161
  22. Kang, H.; Choi, H.; Park, H. J. Chem. Inf. Model. 2007, 47, 509. https://doi.org/10.1021/ci600453b
  23. Park, H.; Jeon, J. Y.; Kim, S. Y.; Jeong, D. G.; Ryu, S. E. J. Comput. Aided Mol. Des. 2011, 25, 469. https://doi.org/10.1007/s10822-011-9432-2
  24. Park, H.; Chi, O.; Kim, J.; Hong, S. J. Chem. Inf. Model. 2011, 51, 2986. https://doi.org/10.1021/ci200378s

Cited by

  1. Discovery of Novel DUSP4 Inhibitors through the Virtual Screening with Docking Simulations vol.35, pp.9, 2013, https://doi.org/10.5012/bkcs.2014.35.9.2655
  2. Iterative Arylation of Itaconimides with Diazonium Salts through Electrophilic Palladium Catalysis: Divergent β-H-Elimination Pathways in Repetitive Matsuda-Heck Reactions vol.84, pp.9, 2019, https://doi.org/10.1021/acs.joc.9b00627