DOI QR코드

DOI QR Code

Change in Microstructural Stability of AZ31 Alloy By the Addition of CaO

CaO 첨가에 의한 AZ31 합금 미세조직의 열적 안정성 변화

  • Jun, Joong-Hwan (Advanced Fusion Process R&D Group, Korea Institute of Industrial Technology)
  • 전중환 (한국생산기술연구원 융합신공정연구그룹)
  • Received : 2013.03.15
  • Accepted : 2013.05.11
  • Published : 2013.05.30

Abstract

Grain growth behaviors of hot-rolled AZ31 (Mg-3%Al-1%Zn) and AZ31-0.3%CaO alloys at elevated temperatures have been investigated in order to clarify the effect of CaO addition on grain stability of Mg-Al-based wrought alloy. The grain size of CaO-free alloy increased steeply from 673 K with an increase in annealing temperature from 573 to 773 K, whereas the grains of CaO-containing alloy were relatively stable up to 723 K. The activation energies for grain growth ($E_g$) were 12.2 and 18.3 kJ/mole between 573 and 673 K and 119.2 and 126.9 kJ/mole between 673 and 773 K in the AZ31 and AZ31-0.3%CaO alloys, respectively. This result indicates that grains in the CaO-added alloy possess higher thermal stability than CaO-free alloy. SEM observations on the annealed alloy samples revealed that higher grain stability resulting from CaO addition would be associated with the suppression of grain growth by Ca-related precipitate particles distributed in the microstructure.

Keywords

References

  1. J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, and K. Higashi : Acta Mater., 51 (2003) 2055. https://doi.org/10.1016/S1359-6454(03)00005-3
  2. W. B. Hutchinson and M. R. Barnett : Scripta Mater., 63 (2010) 737. https://doi.org/10.1016/j.scriptamat.2010.05.047
  3. N. Ono, R. Nowak, and S. Miura : Mater. Lett., 58 (2003) 39.
  4. A. Bussiba, A. Ben Artzy, A. Shtechman, S. Ifergan, and M. Kupiec : Mater. Sci. Eng. A, 302 (2001) 56. https://doi.org/10.1016/S0921-5093(00)01354-X
  5. K. Kubota, M. Mabuchi, and K. Higashi : J. Mater. Sci., 34 (1999) 2255. https://doi.org/10.1023/A:1004561205627
  6. T. Mohri, M. Mabuchi, N. Nakamura, T. Asahina, H. Iwasaki, T. Aizawa, and K. Higashi : Mater. Sci. Eng. A, 290 (2000) 139. https://doi.org/10.1016/S0921-5093(00)00959-X
  7. S. Alsagabi and I. Charit : Mater. Sci. Eng. A, 536 (2012) 64. https://doi.org/10.1016/j.msea.2011.12.054
  8. J. K. Lee and S. K. Kim : Mater. Trans., 52 (2011) 1483. https://doi.org/10.2320/matertrans.M2010397
  9. S. H. Ha, J. K. Lee and S. K. Kim : Mater. Trans., 49 (2008) 1081. https://doi.org/10.2320/matertrans.MC200786
  10. E. H. Cho, J. H. Jun, and Y. J. Kim : Kor. J. Mater. Res., 22 (2012) 499. https://doi.org/10.3740/MRSK.2012.22.10.499
  11. J. H. Jun : J. Kor. Soc. Heat Treat., 25 (2012) 190. https://doi.org/10.12656/jksht.2012.25.4.190
  12. H. K. Lim, S. K. Kim, and D. H. Kim : J. Kor. Found. Soc., 32 (2012) 44. https://doi.org/10.7777/jkfs.2012.32.1.044
  13. N. D. Nam, M. Z. Bian, M. Forsyth, M. Seter, M. Tan, and K. S. Shin : Corr. Sci., 64 (2012) 263. https://doi.org/10.1016/j.corsci.2012.07.026
  14. H. J. Bang, H. G. Jeong, and J. B. Lee : Proc. Fall Conf. Kor. Inst. Met. Mater., (2012) 222.
  15. W. J. Kim and B. H. Lee : J. Alloy Comp., 482 (2009) 106. https://doi.org/10.1016/j.jallcom.2009.04.039
  16. W. J. Kim and B. H. Lee : Mater. Sci. Eng. A, 527 (2010) 5984. https://doi.org/10.1016/j.msea.2010.05.090
  17. H. K. Kim and W. J. Kim : Mater. Sci. Eng. A, 385 (2004) 300. https://doi.org/10.1016/j.msea.2004.06.055
  18. P. G. Shewman : Trans. AIME 206 (1956) 918.
  19. H. J. Frost and M. E. Ashby : Deformation Mechanism Maps, Pergamon Press, Oxford (1982).
  20. J. Wang, Y. Iwahashi, Z. Horita, M. Furukawa, M. Nemoto, R. Z. Valief, and T. G. Langdon : Acta Mater., 44 (1996) 2973. https://doi.org/10.1016/1359-6454(95)00395-9
  21. S. M. Liang, R. S. Chen, J. J. Blandin, M. Suery, and E. H. Han : Mater. Sci. Eng. A, 480 (2008) 365. https://doi.org/10.1016/j.msea.2007.07.025
  22. H. Zhang, S. L. Shang, Y. Wang, L. Q. Chen, and Z. K. Liu : Intermetallics, 22 (2012) 17. https://doi.org/10.1016/j.intermet.2011.08.019