DOI QR코드

DOI QR Code

High Temperature Gas Nitriding of Fe-20Mn-12Cr-1Cu Damping Alloy

Fe-20Mn-12Cr-1Cu 제진합금의 고온가스 질화처리

  • Sung, Jee-Hyun (Daegu Machinery Institute of Components and Materials) ;
  • Kim, Yeong-Hee (Regional Technology Innovation Center, Dong-A University) ;
  • Sung, Jang-Hyun (Regional Technology Innovation Center, Dong-A University) ;
  • Kang, Chang-Yong (Division of Materials Science and Engineering, Pukyoung National University)
  • 성지현 (대구기계부품연구원) ;
  • 김영희 (동아대학교 클러스터사업단) ;
  • 성장현 (동아대학교 클러스터사업단) ;
  • 강창룡 (부경대학교 금속공학과)
  • Received : 2013.03.11
  • Accepted : 2013.05.05
  • Published : 2013.05.30

Abstract

The microstructural changes of Fe-20Mn-12Cr-1Cu alloy have been studied during high temperature gas nitriding (HTGN) at the range of $1000^{\circ}C{\sim}1150^{\circ}C$ in an atmosphere of nitrogen gas. The mixed microstructure of austenite and ${\varepsilon}$-martensite of as-received alloy was changed to austenite single phase after HTGN treatment at the nitrogen-permeated surface layer, however the interior region that was not affected nitrogen permeation remained the structure of austenite and ${\varepsilon}$-martensite. With raising the HTGN treatment temperature, the concentration and permeation depth of nitrogen, which is known as the austenite stabilizing element, were increased. Accordingly, the depth of austenite single phase region was increased. The outmost surface of HTGN treated alloy at $1000^{\circ}C$ appeared Cr nitride. And this was in good agreement with the thermodynamically calculated phase diagram. The grain growth was delayed after HTGN treatment temperature ranges of $1000^{\circ}C{\sim}1100^{\circ}C$ due to the grain boundary precipitates. For the HTGN treatment temperature of $1150^{\circ}C$, the fine grain region was shown at the near surface due to the grain boundary precipitates, however, owing to the depletion of grain boundary precipitates, coarse grain was appeared at the depth far from the surface. This depletion may come from the strong affinity between nitrogen and substitutional element of Al and Ti leading the diffusion of these elements from interior to surface. Because of the nitrogen dissolution at the nitrogen-permeated surface layer by HTGN treatment, the surface hardness was increased above 150 Hv compared to the interior region that was consisted with the mixed microstructure of austenite and ${\varepsilon}$-martensite.

Keywords

References

  1. Ritchie, I. G. and Pan, Z. L. : Metall Trans A Phys Metall Mater Sci. 22A (1992) 607.
  2. I. B. Kekalo : Pergamon Press. 31 (1986) 2127.
  3. N. Igata, N. Urahashi, M. Sasaki, and Y. Kogo : Journal of Alloys and Compounds 355 (2003) 85. https://doi.org/10.1016/S0925-8388(03)00282-2
  4. Zhang, Z. Y., Zeng, X.Q., and Ding, W. J. : Materi Sci Eng A Structure Mater Prop Microstruct Process 370 (2004) 172. https://doi.org/10.1016/j.msea.2002.12.007
  5. J. H. Jun, K. P. Hong, and C. S. Choi : J. of Korean Society for Heat Treatment, 15(6) (2002) 272.
  6. Patent 0574375, Korea Patent Office, Seoul, 10 December 1992.
  7. Y. K. Lee, J. H. Jun, and C. S. Choi : Scr. Mate. 35/7 (1996) 825. https://doi.org/10.1016/1359-6462(96)00231-X
  8. D. U. Son, J. H. Kim, S. H. Jung, C. M. Lee, I. S. Kim, and C. H. Kang : Korean Society for Power System Engineering, 9(1) (2005) 70.
  9. D. U. Son, J. H. Sung, H. H Lee, K. S. Park, C. K. Kim, and C. H. Kang : Korean Society for Power System Engineering, 9(1) (2005) 76.
  10. Hiroyuki Okada, Hideo Sahashi, Ick-Soo Kim, Chang-Yong Kang, Naohiro Igata, Kazuya Miyahara : Material Science and Engineering A, 370 (2004)
  11. J. H. Sung, D. W. Joo, I. S. Kim, C. H. Kang and J. H. Sung : Metals and Materials International, 11(2) (2005) 157. https://doi.org/10.1007/BF03027460
  12. J. H. Sung, Y. C. Jung, Y. H. Kim, J. H. Sung, and C. Y. Kang : Solid State Phenomena, 118 (2006) 143. https://doi.org/10.4028/www.scientific.net/SSP.118.143
  13. I. S. Kim, Y. Nishimura, S. M. Lee, Y. Watanabe, J. Y. Kim, H. R. Jung, C. Y. Kang, and K. Miyahara : J. Kor. Inst. Met. & Mater., 45(7) (2007) 403.
  14. H. Berns and S. Siebert : ISIJ International, 36(7) (1996) 927. https://doi.org/10.2355/isijinternational.36.927
  15. Valentin G. Gavriljuk, Hans Berns: High Nitrogen Steels, Springer, Germany (1999) 205.
  16. J. H. Sung, J. H. Kong, D. K Yoo, H. Y. Lee, and H. W. Lee : Materials Science & Engineering A 489 (2008) 38-43. https://doi.org/10.1016/j.msea.2007.11.078
  17. D. K. Yoo, H. J. Lee, C. Y. Kang, K. H. Kim, Y. H. Kim, and J. H Sung : Solid State Phenomena, 118 (2006) 149-154. https://doi.org/10.4028/www.scientific.net/SSP.118.149
  18. J. H. Kong, D. J Lee, H. Y. On, S. J. Park, S. K. Kim, C. Y. Kang, J. H Sung, and H. W. Lee : Met. Mater. Int., 16(6) (2010) 857-863. https://doi.org/10.1007/s12540-010-1201-6
  19. R. Fawley, M. A. Quader, and R. A. Dodd : TMS AIME 242 (1968) 771.
  20. P. R Swann : Corrosion 19 (1963) 102. https://doi.org/10.5006/0010-9312-19.3.102
  21. R. E. Schramm and R. P. Reed : Metall. Trams. A 6 (1975) 1345. https://doi.org/10.1007/BF02641927