DOI QR코드

DOI QR Code

Development of Efficient Screening Method for Resistance of Cabbage Cultivars to Black Rot Disease Caused by Xanthomonas campestris pv. campestris

양배추 검은썩음병에 대한 효율적인 저항성 검정법

  • Lee, Ji Hyun (Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology) ;
  • Kim, Jin-Cheol (Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology) ;
  • Jang, Kyoung Soo (Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology) ;
  • Choi, Yong Ho (Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology) ;
  • Ahn, Kyoung Gu (Joeun Seeds) ;
  • Choi, Gyung Ja (Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology)
  • 이지현 (한국화학연구원 바이오화학연구센터) ;
  • 김진철 (한국화학연구원 바이오화학연구센터) ;
  • 장경수 (한국화학연구원 바이오화학연구센터) ;
  • 최용호 (한국화학연구원 바이오화학연구센터) ;
  • 안경구 (조은종묘) ;
  • 최경자 (한국화학연구원 바이오화학연구센터)
  • Received : 2013.03.25
  • Accepted : 2013.06.08
  • Published : 2013.06.30

Abstract

Black rot caused by Xanthomonas campestris pv. campestris (Xcc) is one of the most serious diseases of crucifers world-wide. To establish the efficient screening method for resistant cabbage to Xcc, different inoculation methods, inoculation positions, growth stages of seedlings, and incubation temperatures after inoculation were investigated with the seven cabbage cultivars showing different resistance degrees to the pathogen. Clipping with mouse-tooth forceps was better inoculation method than piercing with 18 pins or cutting with scissors to distinguish the level of resistance and susceptibility. In inoculation using mouth-tooth forceps, clipping the edges of the leaves near veins is more effective than injuring the veins of the leaves directly. In addition, the inoculated plants kept at $22^{\circ}C$ showed more clear resistant and susceptible responses than those kept at 26 or $30^{\circ}C$. On the basis of the results, we suggest that an efficient screening method for resistance of cabbage cultivars to black rot is to clip the edges of the leaves near veins of the four-week-old seedlings with mouth-tooth forceps dipped in a suspension of Xcc at a concentration of $7{\times}10^7$ cfu/ml and incubate the inoculated plants in a growth room at $22^{\circ}C$ with 12-hr light a day.

Xanthomonas campestris pv. campestris(Xcc)에 의한 검은썩음병은 세계적으로 배추과 작물에 발생하여 큰 피해를 주고 있는 주요 식물병이다. Xcc에 대한 양배추의 효율적인 저항성 검정법을 확립하기 위해, Xcc에 대한 저항성 정도가 서로 다른 '루비아', '오조라', '그린핫', 'Saint', 'Joeun-ACE', 'Wonderball' 및 'XCCR 500' 등 7개 양배추 품종을 대상으로 접종 방법, 접종 위치, 재배 기간 그리고 재배 온도에 따른 검은썩음병 발생을 조사하였다. 양배추 품종들의 저항성은 18핀이나 가위를 사용하여 접종하는 것보다 핀셋(mouth-tooth forceps)을 사용하여 접종하였을 때 가장 큰 차이를 보이며, 직접적으로 엽맥에 접종하는 것보다 엽맥 주변에 접종이 더 효과적이었다. 그리고 접종한 유묘를 $30^{\circ}C$ 보다 $22^{\circ}C$에서 재배하였을 때에 감수성과 저항성 반응이 더 분명하게 나타났다. 이상의 결과로부터 양배추 검은썩음병에 대한 효과적인 저항성 검정법으로 4주 재배한 유묘의 엽맥 주변을 핀셋(mouth-tooth forceps)으로 상처 접종한 후 $22^{\circ}C$ 생육상에서 재배하는 방법을 제안하고자 한다.

Keywords

References

  1. Bain, D. C. 1952. Reaction of Brassica seedlings to black rot. Phytopathology 42: 497-500.
  2. Bain, D. C. 1955. Resistance of cabbage to black rot. Phytopathology 45: 35-37.
  3. Cartea, M. E., Velasco, P., Obregon, S., Padilla, G. and Haro, A. D. 2008. Seasonal variation in glucosinolate content in Brassica oleracea crops grown in northwestern Spain. Phytochemistry 69: 403-410. https://doi.org/10.1016/j.phytochem.2007.08.014
  4. Dickson, M. H. and Hunter, J. E. 1987. Inheritance of resistance in cabbage seedlings to black rot. Hort. Sci. 22: 108-109.
  5. Eum, H. L., Lee, Y. H., Hong, S. J., Shin, I. S. and Yeoung, Y. R. 2012. Quality change during harvest time and storage of various cabbages grown on high land by different transplanting times. J. Bio-Environ. Control 21: 95-101.
  6. Griesbach, E., Loptien, H. and Miersch, U. 2003. Resistance to Xanthomonas campestris pv. campestris (Pammel) Dowson in cabbage Brassica oleracea L. J. Plant Dis. Prot. 110: 461-475. https://doi.org/10.1007/BF03356123
  7. Guo, H., Dickson, M. H. and Hunter, J. E. 1991. Brassica napus sources of resistance to black rot of crucifers and inheritance of resistance. Hort. Sci. 26: 1545-1547.
  8. Hunter, J. E., Dickson, M. H. and Ludwig, J. 1987. Source of resistance to black rot of cabbage expressed in seedlings and adult plants. Plant Dis. 71: 263-266. https://doi.org/10.1094/PD-71-0263
  9. Ignatov, A., Kuginuki, Y. and Hida, K. 1998. Race-specific reaction of resistance to black rot in Brassica oleracea. Eur. J. Plant Pathol. 104: 821-827. https://doi.org/10.1023/A:1008642829156
  10. Jensen, B. D., Massomo, S. M. S., Swai, I. S., Hockenhull, J. and Andersen, S. B. 2005. Field evaluation for resistance to the black rot pathogen Xanthomonas campestris pv. campestris in cabbage (Brassica oleracea). Eur. J. Plant Pathol. 113: 297-308. https://doi.org/10.1007/s10658-005-2799-y
  11. Jo, S. J., Shim, S. A., Jang, K. S., Choi, Y. H., Kim, J. C. and Choi, G. J. 2012. Development of efficient screening method for resistant cabbage and broccoli to Plasmodiophora brassicae. Res. Plant Dis. 18: 86-92. (In Korean) https://doi.org/10.5423/RPD.2012.18.2.086
  12. Kamoun, S., Kadmar, H. V., Tola, E. and Kado, C. I. 1992. Incompatible interaction between crucifers and Xanthomonas campestris involve a vascular hypersensitive response: Role of the hrpX locus. Mol. Plant-Microbe Interact. 5: 22-33. https://doi.org/10.1094/MPMI-5-022
  13. Kocks, C. G., Ruissen, M. A., Zadoks, J. C. and Duijkers, M. G. 1998. Survival and extension of Xanthomonas campestris pv. campestris in soil. Eur. J. Plant Pathol. 104: 911-923. https://doi.org/10.1023/A:1008685832604
  14. Lee, S. O. 2007. Agricultural products story (21) Cabbage. Agrochemical News Magazine 28: 48. (In Korean)
  15. Marthe, F., Scholze, P., Griesbach, E. and Ryschka, U. 2002. New resistances to black rot (Xanthomonas campestris pv. campestris), clubroot (Plasmodiophora brassicae), blackleg and leaf spots (Phoma lingam) from genus Brassica to enhance resistance in cabbage (Brassica oleracea). 13. Crucifer Genetics Workshop, Davis, USA. 88 pp.
  16. Monakhos, G. F. and Djalilov, F. S. 2000. Genetic sources and methods for estimation of brassicas resistance to black rot. J. Russ. Phytopathol. Soc. 1: 83-88.
  17. Oh, I. N., Choi, S. H., Park, S. Y., Lim, Y. P. and An, G. H. 2011. Effect of season, tissue position and color on content of amino acids in cabbage (Brassica oleracea). CNU J. Agr. Sci. 38: 79-86. (In Korean)
  18. Quazi, M. H. 1988. Interspecific hybrids between Brassica napus and Brassica oleracea L. developed by embryo culture. Theor. Appl. Genet. 75: 309-318. https://doi.org/10.1007/BF00303970
  19. Schaad, N. W. and Dianese, J. C. 1981. Cruciferous weeds as sources of inoculum of Xanthomonas campestris in black rot of crucifers. Phytopathology 71: 1215-1220. https://doi.org/10.1094/Phyto-71-1215
  20. Sharma, B. R., Swarup, V. and Chatterjee, S. S. 1972. Inheritance of resistance to black rot in cauliflower. Can. J. Genet. Cytol. 14: 363-370. https://doi.org/10.1139/g72-045
  21. Slusarenko, A. J., Fraser, R. S. S. and van Loon, L. C. 2000. Mechanisms of resistance to plant diseases. In: Black Rot of Crucifers, ed. by A. M. Alvarez, pp. 21-52. Kluwer Academic Publishers, Netherlands.
  22. Smith, E. F. 1911. Bacteria in Relation to Plant Diseases; History, General Considerations, Vascular Diseases. Vol. II. Carnegie Inst., Washington D. C. 262 pp.
  23. Staub, T. and Williams, P. H. 1972. Factors influencing black rot lesion development in resistant and susceptible cabbage. Phytopathology 62: 722-728. https://doi.org/10.1094/Phyto-62-722
  24. Stewart, F. C. and Harding, H. A. 1903. Combating the black rot of cabbage by the removal of affected leaves. N. Y. Agric. Exp. St. Bull. 232: 43-65.
  25. Sutton, M. D. and Williams, P. H. 1970. Relation of xylem plugging to black rot lesion development in cabbage. Can. J. Bot. 48: 391-401. https://doi.org/10.1139/b70-056
  26. Taylor, J. D., Conway, J., Roberts, S. J., Astley, D. and Vicente, J. G. 2002. Sources and origin of resistance to Xanthomonas campestris pv. campestris in Brassica genomes. Phytopathology 92: 105-111. https://doi.org/10.1094/PHYTO.2002.92.1.105
  27. Tonguc, M., Earle, E. D. and Griffiths, P. D. 2003. Segregation distortion of Brassica carinata derived black rot resistance in Brassica oleracea. Euphytica 134: 269-276. https://doi.org/10.1023/B:EUPH.0000004947.37512.92
  28. Vicente, J. G., Conway, J., Roberts, S. J. and Taylor, J. D. 2001. Identification and origin of Xanthomonas campestris pv. campestris races and related pathovars. Phytopathology 91: 492-499. https://doi.org/10.1094/PHYTO.2001.91.5.492
  29. Westman, A., Kresovich, S. and Dickson, M. H. 1999. Regional variation in Brassica nigra and other weedy crucifers for disease reaction to Alternaria brassicicola and Xanthomonas campestris pv. campestris. Euphytica 106: 253-259. https://doi.org/10.1023/A:1003544025146
  30. Williams, P. H., Staub, T. and Sutton, J. C. 1972. Inheritance of resistance in cabbage to black rot. Phytopathology 62: 247-252. https://doi.org/10.1094/Phyto-62-247
  31. Williams, P. H. 1980. Black rot: A continuing threat to world crucifers. Plant Dis. 64: 736-742. https://doi.org/10.1094/PD-64-736

Cited by

  1. Molecular breeding for resistance to black rot [Xanthomonas campestris pv. campestris (Pammel) Dowson] in Brassicas: recent advances vol.214, pp.10, 2018, https://doi.org/10.1007/s10681-018-2275-3