참고문헌
- Ali, A; Aggarwal, J. 2001, Segmentation and recognition of continuous human activity, Paper presented at the IEEE workshop on Detection and Recognition of Events in Video, July 28-35.
- Bhattacharyya, A. 1943, On a measure of divergence between two statistical populations defined by probability distributions, Bulletin of the Calcutta Mathematical Society, 35:99-109.
- Feng, J. F; Zhu, G. Y; Liu, Z. H; Li, Y. 2009, Research of Vehicle Navigation Bsed Video-GIS, Journal of Spatial Information Society, 11(2):39-44.
- Han, J. H. 2009, Video Surveillance and Analysis Algorithms: Technologies and Trends, Journal of the Koreas Institute of Electronics Engineers, 36(10):18-29.
- Haralick, R; Shanmugam, B; Dinstein, I. 1973, Textural features for image classification. IEEE trans. Syst. Man & Cyber., 33(3):610-622.
- Horn, B.K.P; Schunck, B.G. 1981, Determining optical flow, Artificial Intelligence, 17:185-203. https://doi.org/10.1016/0004-3702(81)90024-2
- Kullback, S; Burnham, K. P. 1987, Letter to the Editor: The Kullback-Leibler distance, The American Statistician 41(4):340-341.
- Levina, E; Bickel, P. 2001, The Earth Mover's Distance is the Mallows Distance: Some Insights from Statistics, Paper presented at ICCV, July 251-256.
- Lucas, B. D; Kanade, T. 1981, An iterative image registration technique with an application to stereo vision, Paper presented at the Imaging Understanding Workshop, April 121-130.
- Ning, J; Zhang, L; Zhang, D; Wu, C. 2012, Robust mean-shift tracking with corrected background-weighted histogram, Computer Vision, IET, 6(1):62-69. https://doi.org/10.1049/iet-cvi.2009.0075
- Oliver, N; Rosario, B; Pentland, A. 2000, A bayesian computer vision system for modeling human interactions. IEEE trans. on PAMI, 22(8):831-843. https://doi.org/10.1109/34.868684
- Paragios, N; Deriche, R. 2002, Geodesic active regions and level set methods for supervised texture segmentation, International Journal of Computer Vision 46(3):223-247. https://doi.org/10.1023/A:1014080923068
- Stauffer, C; Grimson, W. 1999, Adaptive background mixture models for real-time tracking, Paper presented at CVPR, June 246-252.
- Veenman, C; Reinders, M; Backer, E. 2001, Resolving motion correspondence for densely moving points, IEEE Trans. PAMI. 23(1):54-72. https://doi.org/10.1109/34.899946
- Wren, C. R; Azarbayejani, A; Drarrell, T; Pentland, A. P. 1997, Pfinder; Realtime tracking of the human body, IEEE trans. on PAMI, 19(7):780-785. https://doi.org/10.1109/34.598236
- Wu, Y; Cheng, J; Wang, J; Lu, H; Wang, J; Ling, H; Blasch, E; Bai, L. 2012, Real-Time Probabilistic Covariance Tracking With Efficient Model Update, IEEE Trans. Image Processing, 21(5):2824-2837. https://doi.org/10.1109/TIP.2011.2182521
- Yilmaz, A; Li, X; Shah, M. 2004, Contour based object tracking with occlusion handling in video acquired using mobile cameras, IEEE Trans. PAMI, 26(11):1531-1536. https://doi.org/10.1109/TPAMI.2004.96
- Yoon, C. L; Kim, H. C; Kim, K. O. 2009, 3-D GIS-based Real-time Video Visualization Technology, Journal of Spatial Information Society, 11(1):63-70.
- Zhu, S; Yuille, A. 1996, Region competition: unifying snakes, region growing, and bayes/mdl for multiband image segmentation, IEEE Trans. PAMI. 18(9):884-900. https://doi.org/10.1109/34.537343
- Zivkovic, Z; Heijden, F. 2006, Efficient adaptive density estimation per image pixel for the task of background subtraction, Pattern Recognition Letters, 27(7):773-780. https://doi.org/10.1016/j.patrec.2005.11.005
- Zoidi, O; Tefas, A; Pitas, I. 2013, Visual Object Tracking Based on Local Steering Kernels and Color Histograms, IEEE Transactions on Circuits and Systems for Video Technology, 23(5):870-882. https://doi.org/10.1109/TCSVT.2012.2226527