DOI QR코드

DOI QR Code

A Study on Selenization of Cu-In-Ga Precursors by Cracked Selenium

Cracked Selenium을 이용한 CIGS 박막 셀렌화 공정에 관한 연구

  • Kim, Minyoung (Department of Electronic Engineering, Korea National University of Transportation) ;
  • Kim, Girim (Department of Electronic Engineering, Korea National University of Transportation) ;
  • Kim, Jongwan (Department of Electronic Engineering, Korea National University of Transportation) ;
  • Son, Kyeongtae (Department of Electronic Engineering, Korea National University of Transportation) ;
  • Lee, Jongkwan (DMS Co., LTD.) ;
  • Lim, Donggun (Department of Electronic Engineering, Korea National University of Transportation)
  • Received : 2013.05.02
  • Accepted : 2013.06.13
  • Published : 2013.07.01

Abstract

In this study, $Cu(In_{1-x},Ga_x)Se_2$ (CIGS) thin films were prepared on the Mo coated soda-lime glass by the DC magnetron sputtering and a subsequent selenization process. For the selenization process, selenization rapid thermal process(RTP) with cracker cell, which was helpful to smaller an atomic of Se, was adopted. To make CIGS layer, they were then annealed with the cracked Se. Based on this selenization method, we made several CIGS thin film and investigated the effects of In deposition time, and selenization time. Through x-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and atomic force microscopy (AFM), it is found that the Mo/In/CuGa structure and the high sputtering power shows the dominant chalcopyrite structure and have a uniform distribution of the grain size. The CIGS films with the In deposition time of 5 min has the best structure due to the smooth surface. And CIGS films with the selenization time of 50 min show good crystalline growth without any voids.

Keywords

References

  1. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, Prog. Photovolt. Res. Appl., 19, 894 (2011). https://doi.org/10.1002/pip.1078
  2. S. Seyrling, S. Calnan, S. Bucheler, J. Hupkes, S. Wenger, D. Bremaud, H. Zogg, and A. N. Tiwari, Thin Solid Films, 517, 2411 (2009). https://doi.org/10.1016/j.tsf.2008.11.038
  3. K. W. Mitchell, C. Eberspacher, J. Ermer, and D. Pier, Proc. 20th IEEE Photovoltaic Specialists Conf., 1384 (1989).
  4. J. Han, J. Koo, H. Jung, and W. K. Kim, J. Alloys Comp., 552, 131 (2013). https://doi.org/10.1016/j.jallcom.2012.10.039
  5. S. Ito, I. M. Dharmadas, G. J. Tolan, J. S. Roberts, G. Hill, H. Miura, J. H. Yum, P. Pechy, P. Liska, P. Comte, and M. Gratzel, Sol. Energy, 85, 1220 (2011). https://doi.org/10.1016/j.solener.2011.02.024
  6. F. O. Adurodija, M. J. Carter, and R. Hill, Sol. Energy Mater. Sol. Cells, 40, 359 (1996). https://doi.org/10.1016/0927-0248(95)00160-3
  7. T. Yamamoto, M. Nakamura, J. Ishizuki, T. Deguchi, S. Ando, H. Nakanishi, and S. Chichibu, J. Phys. Chem. Solids, 64, 1855 (2003). https://doi.org/10.1016/S0022-3697(03)00146-X
  8. A. M. Gabor, J. R. Tuttle, M. A. Contreras, D. S. Albin, A. Franz, D. W. Niles, and R. Noufi, 12th European Photovoltaic Solar Energy Conf., 1 (1994).
  9. F. O. Adurodija, M. J. Carter, and R. Hill, Sol. Energ. Mat. Sol. C., 40 (1996).
  10. F. B. Dejene and V. Alberts, J. Phys. D: Appl. Phys., 38, 22 (2005). https://doi.org/10.1088/0022-3727/38/1/005
  11. N. Kohara, T. Negami, M. Nishitani, Y. Hashimoto, and T. Wada, Appl. Phys. Lett., 67, 835 (1997).
  12. S. K. Kim, J. C. Lee, K. H. Yoon, J. Song, S. H. Kwon, and B. T. Ahn, Kor. Sol. Energ. Soc. Spring Conference, 98, 507 (1998).
  13. I. Repins, M. A. Contreras, B. Egaas, C. Dehart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, Prog. Photovolt: Res. Appl., 235 (2008).
  14. T. Nakada, H. Ohbo, M Fukuda, and A. Kunioka, Sol. Energ. Mat. Sol. C., 49, 216 (1997).
  15. T. Dullweber, G. Hanna, U. Rau, and H. W. Schock, Sol. Energ. Mat. Sol. C., 67, 145 (2001). https://doi.org/10.1016/S0927-0248(00)00274-9