DOI QR코드

DOI QR Code

Hydrolysis Methods for the Efficient Manufacture of Sugar Solutions from the Freshwater Alga Water-net (Hydrodictyon reticulatum)

담수조류 그물말로부터 당 용액의 효율적 제조를 위한 가수분해 방법

  • Kim, Ji-Hyun (Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology) ;
  • Kim, Sul Ki (Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology) ;
  • Ko, Eun Hye (Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology) ;
  • Kim, Jin-Cheol (Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology) ;
  • Kim, Jin-Seog (Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology)
  • 김지현 (한국화학연구원 바이오화학연구센터) ;
  • 김슬기 (한국화학연구원 바이오화학연구센터) ;
  • 고은혜 (한국화학연구원 바이오화학연구센터) ;
  • 김진철 (한국화학연구원 바이오화학연구센터) ;
  • 김진석 (한국화학연구원 바이오화학연구센터)
  • Received : 2013.04.02
  • Accepted : 2013.04.25
  • Published : 2013.06.30

Abstract

To explore hydrolysis methods for the efficient manufacture of sugar solutions from the freshwater alga Water-net (Hydrodictyon reticulatum, HR), acid hydrolysis, enzymatic hydrolysis, and combined hydrolysis (acid followed by enzymatic hydrolysis) were investigated. In the one-step acid hydrolysis, the reaction of 8% solids content using 2% sulfuric acid at $120^{\circ}C$ for 1 hour was desirable. In this case, glucose 27.44 g 100 g $DM^{-1}$ could be obtained from the HR-d13 samples. In the two-step acid hydrolysis, the primary hydrolysis (HR powder : 72% sulfuric acid = 1 g : 1.5 mL) was carried out for 1 hour at $60^{\circ}C$, and then the secondary hydrolysis was done for 1 hour at $120^{\circ}C$ after addition of distilled water 23.5 mL. In this case, glucose 35.11 g/100 g DM could be obtained from the HR-d13 samples. In the combined hydrolysis, 25% solids content using 2% hydrochloric acid were reacted for 1 hour at $120^{\circ}C$, and then citrate buffer and hydrolysis enzyme complexes (E1 1.0 mL+E2 0.2 mL $g^{-1}$ dried matter) were added and reacted for 1 - 2 days at $50^{\circ}C$. In this case, glucose 33.5 g 100 g $DM^{-1}$ could be obtained from the HR-d23+26 samples. In conclusion, combined hydrolysis was likely to be more useful saccharification method of HR biomass at a practical level, considering the glucose productivity, generation of fermentation-inhibiting substances (hydroxyl methyl furfural, furfural), and limited use of strong acid.

담수조류인 그물말 (Hydrodictyon reticulatum, HR)의 실용적 당화조건 확립을 위해 산 가수분해 방법으로서 one-step acid hydrolysis과 two-step acid hydrolysis, 그리고 산가수분해 후 효소가수분해를 병행하는 combined hydrolysis를 검토하였다. One-step acid hydrolysis의 경우, $120^{\circ}C$에서 HR 4% 고형분을 2% 황산 용액에 넣어 1시간 동안 반응시킬 경우가 적정하였다. Two-step acid hydrolysis의 적정조건은 1차 가수분해시 HR 건조중: 72% 황산을 1 g : 1.5mL로 하여 $60^{\circ}C$에서 1시간 반응시킨 다음, 증류수 23.5 mL를 첨가하고 $120^{\circ}C$에서 1시간 가수분해시키는 것이었다. Combined hydrolysis의 경우, 2% 염산에 25%의 HR 고형분을 넣고 $120^{\circ}C$에서 1시간 반응시킨 후, citrate buffer로 4% 고형분 함량이 되도록 희석하고 E1+E2 효소를 각각 1+0.2 mL g $DM^{-1}$ 수준으로 첨가하여 $50^{\circ}C$에서 1~2일 동안 반응시키는 것이 바람직하였다. Glucose 생성량, 발효억제물질(HMF, furfural) 생성량, 강산 사용제한 등을 종합적으로 감안할 때, combined hydolysis가 보다 유용할 것으로 판단되었다.

Keywords

References

  1. Adams, J.M., Gallagher, J.A. and Donnison, I.S. 2009. Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments. J. Appl. Phycol. 21:569-574. https://doi.org/10.1007/s10811-008-9384-7
  2. Alvira, P., Tomás-Pejó, E., Ballesteros M., and Negro, M.J.. 2010. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour. Technol. 101:4851-4861. https://doi.org/10.1016/j.biortech.2009.11.093
  3. Brennan, J. and Owende, P. 2010. Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev. 14: 557-577. https://doi.org/10.1016/j.rser.2009.10.009
  4. Choi, S.P., Nguyen, M.T. and Sim, S.J. 2010. Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresour. Technol. 101:5330-5336. https://doi.org/10.1016/j.biortech.2010.02.026
  5. Daroch, M., Geng, S. and Wang, G. 2013. Recent advances in liquid biofuel production from algal feedstocks. Applied Energy 102:1371-1381. https://doi.org/10.1016/j.apenergy.2012.07.031
  6. Ge, L., Wang, P. and Mou, H. 2011. Study on saccharification techniques of seaweed wastes for the transformation of ethanol. Renewable Energy 36:84-89. https://doi.org/10.1016/j.renene.2010.06.001
  7. Harun, R., Singh, M., Forde, G.M. and Danquah, M.K. 2010. Bioprocess engineering of microalgae to produce a variety of consumer products. Renew. Sustain. Energy Rev. 14:1037-1047. https://doi.org/10.1016/j.rser.2009.11.004
  8. Harun, R., Jason, W.S.Y., Cherrington, T. and Danquah, M.K. 2011. Exploring alkaline pre-treatment of microalgal biomass for bioethanol production, Appl. Energy 88:3464-3467. https://doi.org/10.1016/j.apenergy.2010.10.048
  9. Isa, A., Mishima, Y., Takimura, O. and Minowa, T. 2009. Preliminary study on ethanol production by using macro green algae. J. Japan Inst. Energy 88:912-917.(In Japanese) https://doi.org/10.3775/jie.88.912
  10. Jang, S.S., Shirai, Y., Uchida, M. and Wakisaka, M. 2012. Production of mono sugar from acid hydrolysis of seaweed. Afri. J. Biotechnol. 11:1953-1963.
  11. Jeong, T.S., Kim, Y.S. and Oh, K.K. 2011. Two-stage acid saccharification of fractionated Gelidium amansii minimizing the sugar decomposition. Biotechnol. Bioeng. 102,:10529-10534.
  12. John, R.P., Anisha, G.S., Nampoothiri, K.M. and Pandey, A. 2011. Micro and macroalgal biomass: A renewable source for bioethanol. Bioresour. Technol. 102:186-193. https://doi.org/10.1016/j.biortech.2010.06.139
  13. Kim, S.K,. Hwang, H.J., Kim, J.D., Ko, E.H., Choi, J.S. et al. 2012. Usefulness of freshwater alga water-net (Hydrodictyon reticulatum) as resources for production of fermentable sugars. Korean J. Weed Sci. 32: 85-97.(In Korean) https://doi.org/10.5660/KJWS.2012.32.2.85
  14. Lee, S.M., Yu, B.J., Kim, Y.M., Choi, S.J., Ha, J.M. et al. 2009. Production of bio-ethanol agar using Saccharomyces cerevisiae. J. Korean Ind. Eng. Chem. 20:290-295. (In Korean)
  15. Mata, T.M., Martins, A.A. and Caetano, N.S. 2010. Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev. 14:217-232. https://doi.org/10.1016/j.rser.2009.07.020
  16. Matrai, T., Mayer, S., Kokai, S. and Salamon, I. 2000. Invertase production of common storage moulds in food and feed grains as a possibility for rapid detection of Aspergillus flavus group and Aspergillus fumigatus. Int. J. Food Microbiol. 61:187-191. https://doi.org/10.1016/S0168-1605(00)00360-3
  17. Miranda, J.R., Passarinho, P.C. and Gouveia, L. 2012. Pretreatment optimization of Scenedesmus obliquus microalga for bioethanol production. Bioresour. Technol. 104:342-348. https://doi.org/10.1016/j.biortech.2011.10.059
  18. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., et al. 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96: 673-686. https://doi.org/10.1016/j.biortech.2004.06.025
  19. Nguyen, C.M., Kim, J.S., Hwang, H.J., Park, M.S., Choi, G.J., et al. 2012. Production of L-lactic acid from a green microalga, Hydrodictyon reticulum, by Lactobacillus paracasei LA104 isolated from the traditional Korean food, Makgeolli. Bioresour. Technol. 110:552-559. https://doi.org/10.1016/j.biortech.2012.01.079
  20. NREL. 2010. Chemical analysis and testing standard procedure, No. 001-014, National Renewable Energy Labs., Golden, CO. http://www.nrel.gov/biomass/analytical_procedures. (Accessed on March 5, 2013)
  21. Qian, X., Nimlos, M.R., Johnson, D.K. and Himmel, M.E. 2005. Acidic sugar degradation pathways. App. Biochem. Biotechnol. 124:989-997. https://doi.org/10.1385/ABAB:124:1-3:0989
  22. Scott, S.A., Davey, M.P., Dennis, J.S., Horst, I., Howe, C.J., et al. 2010. Biodiesel from algae: challenges and prospects. Current Opinion in Biotech. 21:277-286. https://doi.org/10.1016/j.copbio.2010.03.005
  23. Ueno, Y., Kurano, N. and Miyachi. S. 1998. Ethanol production by dark fermentation in the marine green alga, Chlorococcum littorale. J. Ferment. Bioeng. 86:38-43. https://doi.org/10.1016/S0922-338X(98)80031-7
  24. Wingren, A., Galbe, M., Roslander, C., Rudol, A. and Zacchi, G. 2005. Effect of reduction in yeast and enzyme concentrations in a simultaneous saccharification and fermentation-based bioethanol process: technical and economic evaluation. Appl. Biochem. Biotechnol. 121:485-499.
  25. Yoon, B.T., Kim, Y.W., Chung, K.W. and Kim, J.S. 2011. Enzymatic hydrolysis of pre-treated Ulva pertusa with alkaline peroxide. Appl. Chem. Eng. 22:336-343. (In Korean)
  26. Zhou, N., Zhang, Y., Wu, X., Gong, X. and Wang, Q. 2011. Hydrolysis of Chlorella biomass for fermentable sugars in the presence of HCl and $MgCl_{2}$. Bioresour. Technol. 102:10158-10161. https://doi.org/10.1016/j.biortech.2011.08.051