DOI QR코드

DOI QR Code

다중벽 탄소 나노튜브 기반 고충전 나노복합 페이스트를 이용한 염료 감응 태양 전지용 상대 전극의 제조에 있어서 분산 제어의 효과

Effect of Dispersion Control of Multi-walled Carbon Nanotube in High Filler Content Nano-composite Paste for the Fabrication of Counter Electrode in Dye-sensitized Solar Cell

  • 박소현 (세종대학교 공과대학 나노신소재공학과 및 고분자 연구소) ;
  • 홍성철 (세종대학교 공과대학 나노신소재공학과 및 고분자 연구소)
  • Park, So Hyun (Faculty of Nanotechnology and Advanced Materials Engineering, Sejong Polymer Research Center, Sejong University) ;
  • Hong, Sung Chul (Faculty of Nanotechnology and Advanced Materials Engineering, Sejong Polymer Research Center, Sejong University)
  • 투고 : 2013.01.30
  • 심사 : 2013.03.10
  • 발행 : 2013.07.25

초록

가공이 쉬우면서도 성능이 우수한 염료 감응 태양 전지(DSSC)용 상대 전극을 제조하기 위하여 다중벽 탄소 나노튜브(MWCNT) 기반의 고충전 나노복합 페이스트를 제조하고, MWCNT의 분산 제어가 미치는 영향에 대하여 조사하여 보았다. MWCNT의 분산성을 향상시키기 위하여 폴리스티렌 기반의 기능성 블록 공중합체를 리빙 라디칼 중합법으로 합성하여 MWCNT의 표면 개질제로 사용하였으며, 적절한 용매 조건의 선택을 통하여 고충전 나노복합 페이스트의 가공성이 향상되는 것을 확인할 수 있었다. MWCNT의 분산 제어를 통해 이를 상대 전극으로 도입한 DSSC의 광전 변환 효율이 향상됨을 확인할 수 있었으며, 이는 볼밀법을 이용한 MWCNT의 물리적 분산을 통해서도 검증할 수 있었다. 미량의 platinum(Pt) 나노입자와 복합화시킬 경우, 표준 Pt 상대 전극보다도 더 우수한 성능을 가지는 MWCNT 기반 상대 전극을 제조할 수 있음을 확인하였다.

Multi-walled carbon nanotube (MWCNT) based nano-composite pastes having a high filler content are prepared for the facile fabrication of a counter electrode (CE) of dye-sensitized solar cell (DSSC). A polystyrene-based functional block copolymer is prepared through a controlled "living" radical polymerization technique, affording a surface modifier for the dispersion control of MWCNT in the paste. Physical dispersion through a ball-milling method additionally confirms the importance of the dispersion control, providing DSSC with enhanced processibility and improved solar-to-electricity energy conversion efficiency (${\eta}$) values. The performances of the DSSCs are further improved through the incorporation of minor amount of platinum (Pt) nanoparticles into the MWCNT pastes. The DSSC with the Pt/MWCNT hybrid CE exhibits very high ${\eta}$ values, which is superior to that of DSSC with the standard Pt CE.

키워드

과제정보

연구 과제 주관 기관 : 한국연구재단

참고문헌

  1. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, Chem. Rev., 110, 6595 (2010). https://doi.org/10.1021/cr900356p
  2. M. Gratzel, Prog. Photovolt. Res. Appl., 8, 171 (2000). https://doi.org/10.1002/(SICI)1099-159X(200001/02)8:1<171::AID-PIP300>3.0.CO;2-U
  3. B. Li, L. Wang, B. Kang, P. Wang, and Y. Qiu, Sol. Energy Mater. Sol. Cells, 90, 549 (2006). https://doi.org/10.1016/j.solmat.2005.04.039
  4. Y.-S. Yen, H.-H. Chou, Y.-C. Chen, C.-Y. Hsu, and J. T. Lin, J. Mater. Chem., 22, 8734 (2012). https://doi.org/10.1039/c2jm30362k
  5. T. N. Murakami and M. Gratzel, Inorg. Chim. Acta, 361, 572 (2008). https://doi.org/10.1016/j.ica.2007.09.025
  6. L.-L. Li, C.-W. Chang, H.-H. Wu, J.-W. Shiu, P.-T. Wu, and E. Wei-Guang Diau, J. Mater. Chem., 22, 6267 (2012). https://doi.org/10.1039/c2jm16135d
  7. T.-L. Hsieh, H.-W. Chen, C.-W. Kung, C.-C. Wang, R. Vittal, and K.-C. Ho, J. Mater. Chem., 22, 5550 (2012). https://doi.org/10.1039/c2jm14623a
  8. Z. Lan, J. Wu, J. Lin, and M. Huang, J. Mater. Chem., 22, 3948 (2012). https://doi.org/10.1039/c2jm15019k
  9. H. Boennemann, G. Khelashvili, S. Behrens, A. Hinsch, K. Skupien, and E. Dinjus, J. Clust. Sci., 18, 141 (2007). https://doi.org/10.1007/s10876-006-0092-7
  10. A. Kay and M. Gratzel, Sol. Energy Mater. Sol. Cells, 44, 99 (1996). https://doi.org/10.1016/0927-0248(96)00063-3
  11. E. Olsen, G. Hagen, and S. E. Lindquist, Sol. Energy Mater. Sol. Cells, 63, 267 (2000). https://doi.org/10.1016/S0927-0248(00)00033-7
  12. P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, and M. Gratzel, Nat. Mater., 2, 402 (2003). https://doi.org/10.1038/nmat904
  13. C. Longo and M. A. De Paoli, J. Braz. Chem. Soc., 14, 889 (2003).
  14. G.-B. Lee and C. Nah, Elast. Compos., 47, 272 (2012). https://doi.org/10.7473/EC.2012.47.4.272
  15. H. Zhu, J. Wei, K. Wang, and D. Wu, Sol. Energy Mater. Sol. Cells, 93, 1461 (2009). https://doi.org/10.1016/j.solmat.2009.04.006
  16. W. J. Lee, E. Ramasamy, D. Y. Lee, and J. S. Song, J. Photochem. Photobiol. A, 194, 27 (2008). https://doi.org/10.1016/j.jphotochem.2007.07.010
  17. E. Ramasamy, W. J. Lee, D. Y. Lee, and J. S. Song, Appl. Phys. Lett., 90, 173103 (2007). https://doi.org/10.1063/1.2731495
  18. Z. Huang, X. Liu, K. Li, D. Li, Y. Luo, H. Li, W. Song, L. Chen, and Q. Meng, Electrochem. Commun., 9, 596 (2007). https://doi.org/10.1016/j.elecom.2006.10.028
  19. W. J. Lee, E. Ramasamy, D. Y. Lee, and J. S. Song, Sol. Energy Mater. Sol. Cells, 92, 814 (2005).
  20. K. Imoto, K. Takahashi, T. Yamaguchi, T. Komura, J.-I. Nakamura, and K. Murata, Sol. Energy Mater. Sol. Cells, 79, 459 (2003). https://doi.org/10.1016/S0927-0248(03)00021-7
  21. M. Latifatu, K. M. Kim, Y. J. Kim, and J. M. Ko, Elast. Compos., 47, 292 (2012). https://doi.org/10.7473/EC.2012.47.4.292
  22. G. Veerappan, K. Bojan, and S. W. Rhee, ACS Appl. Mater. Interfaces, 3, 857 (2011). https://doi.org/10.1021/am101204f
  23. S. Y. Jang, Y. G. Kim, D. Y. Kim, H. G. Kim, and S. M. Jo, ACS Appl. Mater. Interfaces, 4, 3500 (2012). https://doi.org/10.1021/am3005913
  24. J. D. Roy-Mayhew, G. Boschloo, A. Hagfeldt, and I. A. Aksay, ACS Appl. Mater. Interfaces, 4, 2794 (2012). https://doi.org/10.1021/am300451b
  25. T. N. Murakami, S. Ito, Q. Wang, M. K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Pechy, and M. Gratzel, J. Electrochem. Soc., 153, A2255 (2006). https://doi.org/10.1149/1.2358087
  26. H. Choi, H. Kim, S. Hwang, W. Choi, and M. Jeon, Sol. Energy Mater. Sol. Cells, 95, 323 (2011). https://doi.org/10.1016/j.solmat.2010.04.044
  27. J. Velten, A. J. Mozer, D. Li, D. Officer, G. Wallace, R. Baughman, and A. Zakhidov, Nanotechnology, 23, 085201 (2012). https://doi.org/10.1088/0957-4484/23/8/085201
  28. Y. Jo, J. Y. Cheon, J. Yu, H. Y. Jeong, C. H. Han, Y. Jun, and S. H. Joo, Chem. Commun., 48, 8057 (2012). https://doi.org/10.1039/c2cc30923h
  29. D. Y. Kang, Y. Lee, C. Y. Cho, and J. H. Moon, Langmuir, 28, 7033 (2012). https://doi.org/10.1021/la300644j
  30. G. S. Paul, J. H. Kim, M. S. Kim, K. Do, J. Ko, and J. S. Yu, ACS Appl. Mater. Interfaces, 4, 375 (2012). https://doi.org/10.1021/am201452s
  31. E. Ramasamy, J. Chun, and J. Lee, Carbon, 48, 4556 (2010). https://doi.org/10.1016/j.carbon.2010.07.027
  32. P. Joshi, L. Zhang, Q. Chen, D. Galipeau, H. Fong, and Q. Qiao, ACS Appl. Mater. Interfaces, 2, 3572 (2010). https://doi.org/10.1021/am100742s
  33. D. Noureldine, T. Shoker, M. Musameh, and T. H. Ghaddar, J. Mater. Chem., 22, 862 (2012). https://doi.org/10.1039/c1jm15055c
  34. S. U. Lee, W. S. Choi, and B. Hong, Sol. Energy Mater. Sol. Cells, 94, 680 (2010). https://doi.org/10.1016/j.solmat.2009.11.030
  35. S. I. Cha, B. K. Koo, S. H. Seo, and D. Y. Lee, J. Mater. Chem., 20, 659 (2010). https://doi.org/10.1039/b918920c
  36. X. Mei, C. S. Jen, B. Fan, and J. Ouyang, Nanotechnology, 21, 395202 (2010). https://doi.org/10.1088/0957-4484/21/39/395202
  37. W. J. Lee, E. Ramasamy, D. Y. Lee, and J. S. Song, ACS Appl. Mater. Interfaces, 1, 1145 (2009). https://doi.org/10.1021/am800249k
  38. J. G. Nam, Y. J. Park, B. S. Kim, and J. S. Lee, Scr. Mater., 62, 148 (2010). https://doi.org/10.1016/j.scriptamat.2009.10.008
  39. E. Ramasamy, W. J. Lee, D. Y. Lee, and J. S. Song, Electrochem. Commun., 10, 1087 (2008). https://doi.org/10.1016/j.elecom.2008.05.013
  40. H. Zhu, H. Zeng, V. Subramanian, C. Masarapu, K. H. Hung, and B. Wei, Nanotechnology, 19, 465204 (2008). https://doi.org/10.1088/0957-4484/19/46/465204
  41. A. Y. C. H. Yoon, Elast. Compos., 46, 231 (2011).
  42. I. H. Choi, M. Park, S.-S. Lee, and S. C. Hong, Eur. Polym. J., 44, 3087 (2008). https://doi.org/10.1016/j.eurpolymj.2008.07.007
  43. Y.-S. Shim, B.-G. Min, and S.-J. Park, Macromol. Res., 20, 540 (2012). https://doi.org/10.1007/s13233-012-0076-4
  44. C. Basavaraja, B. S. Kim, and D. S. Huh, Macromol. Res., 19, 233 (2011). https://doi.org/10.1007/s13233-011-0314-1
  45. V. Tjoa, J. Chua, S. S. Pramana, J. Wei, S. G. Mhaisalkar, and N. Mathews, ACS Appl. Mater. Interfaces, 4, 3447 (2012). https://doi.org/10.1021/am300437g
  46. F. Gong, H. Wang, and Z. S. Wang, Phys. Chem. Chem. Phys., 13, 17676 (2011). https://doi.org/10.1039/c1cp22542a
  47. M.-Y. Yen, C.-C. Teng, M.-C. Hsiao, P.-I. Liu, W.-P. Chuang, C.-C. M. Ma, C.-K. Hsieh, M.-C. Tsai, and C.-H. Tsai, J. Mater. Chem., 21, 12880 (2011). https://doi.org/10.1039/c1jm11850a
  48. R. Bajpai, S. Roy, P. Kumar, P. Bajpai, N. Kulshrestha, J. Rafiee, N. Koratkar, and D. S. Misra, ACS Appl. Mater. Interfaces, 3, 3884 (2011). https://doi.org/10.1021/am200721x
  49. H. Han, U. Bach, Y.-B. Cheng, R. A. Caruso, and C. MacRae, Appl. Phys. Lett., 94, 103102 (2009). https://doi.org/10.1063/1.3086895
  50. P. Li, J. Wua, J. Lin, M. Huang, Y. Huang, and Q. Li, Sol. Energy, 83, 845 (2009). https://doi.org/10.1016/j.solener.2008.11.012
  51. S. C. Hong, J. E. Shin, H. J. Choi, H. H. Gong, K. Kim, and N.-G. Park, Ind. Eng. Chem. Res., 49, 11393 (2010). https://doi.org/10.1021/ie1013822
  52. H. J. Choi, J. E. Shin, G.-W. Lee, N.-G. Park, K. Kim, and S. C. Hong, Curr. Appl. Phys., 10, S165 (2010). https://doi.org/10.1016/j.cap.2009.11.062
  53. H. J. Choi, H. H. Gong, J.-Y. Park, and S. C. Hong, J. Mater. Sci., 48, 906 (2012).