DOI QR코드

DOI QR Code

Performance of a Novel Sulfonate Flame Retardant Based on Adamantane for Polycarbonate

아드만탄 기반의 새로운 설포네이트 폴리카보네이트 난연제 성능 연구

  • Guo, Jianwei (School of Chemical Engineering & Light Industry, Guangdong University of Technology) ;
  • Wang, Yueqin (School of Chemical Engineering & Light Industry, Guangdong University of Technology) ;
  • Feng, Lijuan (School of Chemical Engineering & Light Industry, Guangdong University of Technology) ;
  • Zhong, Xing (School of Chemical Engineering & Light Industry, Guangdong University of Technology) ;
  • Yang, Chufen (School of Chemical Engineering & Light Industry, Guangdong University of Technology) ;
  • Liu, Sa (Biomedical Engineering Institute, South China University of Technology) ;
  • Cui, Yingde (School of Chemical Engineering & Light Industry, Guangdong University of Technology)
  • Received : 2012.12.11
  • Accepted : 2013.03.08
  • Published : 2013.07.25

Abstract

A novel sulfonate flame retardant, 1,3,5,7-tetrakis(phenyl-4-sodium sulfonate)adamantane (FR-A), was successfully synthesized from 1-bromoadamantane in sequential four-step reactions involving Fiedel-Crafts phenylation, sulphonation, hydrolysis, and neutralization. The success of synthesis was confirmed by FTIR spectra, $^1H$ NMR spectra, elemental analyses and mass spectra. The effect of FR-A on the flame retardacy of polycarbonate (PC) has been studied. Limiting oxygen index (LOI) and thermogravimetric analysis (TGA) showed that this novel sulfonate flame retardant had effective flame retardancy on polycarbonate (PC). With a small amount (0.08 wt%) of FR-A, the flame retardancy of PC was improved obviously, which got to UL 94 V-0 rating. TGA and DTA curves demonstrated that the additive raised the degradation rate of PC by promoting the quick formation of an insulating carbon layer on the surface, and confirmed that the flame retardant mechanism of PC/FR-A system was similar to potassium diphenylsulfone sulfonate (KSS).

Keywords

Acknowledgement

Supported by : Guangdong University

References

  1. S. V. Levchik and E. D. Weil, Polym. Int., 54, 981 (2005). https://doi.org/10.1002/pi.1806
  2. A. Ballistreri, G. Montaudo, E. Scamporrino, C. Puglisi, D. Vitalini, and S. Cucinella, J. Macromol. Sci., A, 26, 2113 (1988).
  3. S. V Levchik and E. D. Weil, Polym. Int., 54, 11 (2005). https://doi.org/10.1002/pi.1663
  4. S.V. Levchik and E. D. Weil, J. Fire Sci., 24, 345 (2006). https://doi.org/10.1177/0734904106068426
  5. D. J. Romenesko and R. R. Buch, U.S. Patent 5,508,323 (1996).
  6. Z. Hu, L. Chen, B. Zhao, Y. Luo, and D. Y. Wang, Polym. Degrad. Stabil., 96, 320 (2011). https://doi.org/10.1016/j.polymdegradstab.2010.03.005
  7. T. Ishikawa, I. Maki, T. Koshizuka, T. Ohkawa, and K. Takeda, J. Macromol. Sci., A, 41, 523 (2004). https://doi.org/10.1081/MA-120030922
  8. M. K. Oh, S. H. Yoon, Y. Lee, J. Han, S. Won, and J. Nam, Polymer(Korea), 32, 13 (2008).
  9. T. Ishikawa, I. Maki, T. Koshizuka, T. Ohkawa, and K. Takeda, J. Macromol. Sci., A, 41, 523 (2004). https://doi.org/10.1081/MA-120030922
  10. A. Nodera and T. J. Kanai, J. Appl. Polym. Sci., 94, 2131 (2004). https://doi.org/10.1002/app.21091
  11. S. Y. Lu and I. Hamerton, Prog. Polym. Sci., 27, 1661 (2002). https://doi.org/10.1016/S0079-6700(02)00018-7
  12. S. V. Levchik and E. D. Weil, J. Fire Sciences, 24, 136 (2006).
  13. D. M. Shen, O. L. Chapman, L. Lin, and R. Ortiz, U.S. Patent 5,347,063 (1994).
  14. D. J. Hoffar, P. A. Cote, and G. K. H. Shimizu, Inorg. Chem., 42, 8603 (2003). https://doi.org/10.1021/ic0349398
  15. X. Huang, X. Ouyang, F. Ning, and J. Wang, Polym. Degrad. Stabil., 91, 606 (2006). https://doi.org/10.1016/j.polymdegradstab.2005.02.028
  16. S. Liu, H. Ye, Y. Zhou, J. He, Z. Jiang, J. Zhao, and X. Huang, Polym. Degrad. Stabil., 91, 1808 (2006). https://doi.org/10.1016/j.polymdegradstab.2005.11.013
  17. L. Xu and R. A. Weiss, Polym. Degrad. Stabil., 84, 295 (2004). https://doi.org/10.1016/j.polymdegradstab.2003.11.004
  18. J. Innes and A. Innes, Plast. Addit. Compoud., 26, 1 (2006).

Cited by

  1. Synthesis of an Efficient S/N-Based Flame Retardant and Its Application in Polycarbonate vol.10, pp.4, 2018, https://doi.org/10.3390/polym10040441
  2. Porous Materials Based on 3-Dimensional Td-Directing Functionalized Adamantane Scaffolds and Applied as Recyclable Catalysts vol.31, pp.3, 2013, https://doi.org/10.1021/acs.chemmater.8b04508
  3. Halogen-free and phosphorus-free flame-retarded polycarbonate using cyclic polyphenylsilsesquioxanes vol.55, pp.24, 2020, https://doi.org/10.1007/s10853-020-04763-8
  4. Chemoselectivity of Nitroxylation of Cage Hydrocarbons vol.56, pp.10, 2013, https://doi.org/10.1134/s107042802010005x
  5. A phosphorous/nitrogen/silicon containing diphenylphosphoramide silicon oil toward effective flame retardancy for polycarbonate with comparable mechanical properties vol.139, pp.10, 2013, https://doi.org/10.1002/app.51755