DOI QR코드

DOI QR Code

Lipolytic Enzymes Involved in the Virulence of Human Pathogenic Fungi

  • Park, Minji (Department of Systems Biotechnology, Chung-Ang University) ;
  • Do, Eunsoo (Department of Systems Biotechnology, Chung-Ang University) ;
  • Jung, Won Hee (Department of Systems Biotechnology, Chung-Ang University)
  • Received : 2013.06.07
  • Accepted : 2013.06.08
  • Published : 2013.06.30

Abstract

Pathogenic microbes secrete various enzymes with lipolytic activities to facilitate their survival within the host. Lipolytic enzymes include extracellular lipases and phospholipases, and several lines of evidence have suggested that these enzymes contribute to the virulence of pathogenic fungi. Candida albicans and Cryptococcus neoformans are the most commonly isolated human fungal pathogens, and several biochemical and molecular approaches have identified their extracellular lipolytic enzymes. The role of lipases and phospholipases in the virulence of C. albicans has been extensively studied, and these enzymes have been shown to contribute to C. albicans morphological transition, colonization, cytotoxicity, and penetration to the host. While not much is known about the lipases in C. neoformans, the roles of phospholipases in the dissemination of fungal cells in the host and in signaling pathways have been described. Lipolytic enzymes may also influence the survival of the lipophilic cutaneous pathogenic yeast Malassezia species within the host, and an unusually high number of lipase-coding genes may complement the lipid dependency of this fungus. This review briefly describes the current understanding of the lipolytic enzymes in major human fungal pathogens, namely C. albicans, C. neoformans, and Malassezia spp.

Keywords

References

  1. Yike I. Fungal proteases and their pathophysiological effects. Mycopathologia 2011;171:299-323. https://doi.org/10.1007/s11046-010-9386-2
  2. Gribbon EM, Cunliffe WJ, Holland KT. Interaction of Propionibacterium acnes with skin lipids in vitro. J Gen Microbiol 1993;139:1745-51. https://doi.org/10.1099/00221287-139-8-1745
  3. Farrell AM, Foster TJ, Holland KT. Molecular analysis and expression of the lipase of Staphylococcus epidermidis. J Gen Microbiol 1993;139:267-77. https://doi.org/10.1099/00221287-139-2-267
  4. Jaeger KE, Ransac S, Dijkstra BW, Colson C, van Heuvel M, Misset O. Bacterial lipases. FEMS Microbiol Rev 1994;15:29-63. https://doi.org/10.1111/j.1574-6976.1994.tb00121.x
  5. Singh G, Singh G, Jadeja D, Kaur J. Lipid hydrolizing enzymes in virulence: Mycobacterium tuberculosis as a model system. Crit Rev Microbiol 2010;36:259-69. https://doi.org/10.3109/1040841X.2010.482923
  6. Hube B, Stehr F, Bossenz M, Mazur A, Kretschmar M, Schäfer W. Secreted lipases of Candida albicans: cloning, characterisation and expression analysis of a new gene family with at least ten members. Arch Microbiol 2000;174:362-74. https://doi.org/10.1007/s002030000218
  7. Gácser A, Schäfer W, Nosanchuk JS, Salomon S, Nosanchuk JD. Virulence of Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis in reconstituted human tissue models. Fungal Genet Biol 2007;44:1336-41. https://doi.org/10.1016/j.fgb.2007.02.002
  8. DeAngelis YM, Saunders CW, Johnstone KR, Reeder NL, Coleman CG, Kaczvinsky JR Jr, Gale C, Walter R, Mekel M, Lacey MP, et al. Isolation and expression of a Malassezia globosa lipase gene, LIP1. J Invest Dermatol 2007;127:2138-46.
  9. Mancianti F, Rum A, Nardoni S, Corazza M. Extracellular enzymatic activity of Malassezia spp. isolates. Mycopathologia 2001;149:131-5. https://doi.org/10.1023/A:1007237408748
  10. Muhsin TM, Aubaid AH, al-Duboon AH. Extracellular enzyme activities of dermatophytes and yeast isolates on solid media. Mycoses 1997;40:465-9. https://doi.org/10.1111/j.1439-0507.1997.tb00186.x
  11. Ghannoum MA. Potential role of phospholipases in virulence and fungal pathogenesis. Clin Microbiol Rev 2000;13:122-43. https://doi.org/10.1128/CMR.13.1.122-143.2000
  12. Ibrahim AS, Mirbod F, Filler SG, Banno Y, Cole GT, Kitajima Y, Edwards JE Jr, Nozawa Y, Ghannoum MA. Evidence implicating phospholipase as a virulence factor of Candida albicans. Infect Immun 1995;63:1993-8.
  13. Cox GM, McDade HC, Chen SC, Tucker SC, Gottfredsson M, Wright LC, Sorrell TC, Leidich SD, Casadevall A, Ghannoum MA, et al. Extracellular phospholipase activity is a virulence factor for Cryptococcus neoformans. Mol Microbiol 2001;39:166-75. https://doi.org/10.1046/j.1365-2958.2001.02236.x
  14. Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 2007;20:133-63. https://doi.org/10.1128/CMR.00029-06
  15. Zaoutis TE, Argon J, Chu J, Berlin JA, Walsh TJ, Feudtner C. The epidemiology and attributable outcomes of candidemia in adults and children hospitalized in the United States: a propensity analysis. Clin Infect Dis 2005;41:1232-9. https://doi.org/10.1086/496922
  16. Fu Y, Ibrahim AS, Fonzi W, Zhou X, Ramos CF, Ghannoum MA. Cloning and characterization of a gene (LIP1) which encodes a lipase from the pathogenic yeast Candida albicans. Microbiology 1997;143(Pt 2):331-40. https://doi.org/10.1099/00221287-143-2-331
  17. Stehr F, Felk A, Gacser A, Kretschmar M, Mahnss B, Neuber K, Hybe B, Schafer W. Expression analysis of the Candida albicans lipase gene family during experimental infections and in patient samples. FEMS Yeast Res 2004;4:401-8. https://doi.org/10.1016/S1567-1356(03)00205-8
  18. Schofield DA, Westwater C, Warner T, Balish E. Differential Candida albicans lipase gene expression during alimentary tract colonization and infection. FEMS Microbiol Lett 2005; 244:359-65. https://doi.org/10.1016/j.femsle.2005.02.015
  19. Paraje MG, Correa SG, Renna MS, Theumer M, Sotomayor CE. Candida albicans-secreted lipase induces injury and steatosis in immune and parenchymal cells. Can J Microbiol 2008;54:647-59. https://doi.org/10.1139/W08-048
  20. Paraje MG, Correa SG, Albesa I, Sotomayor CE. Lipase of Candida albicans induces activation of NADPH oxidase and L-arginine pathways on resting and activated macrophages. Biochem Biophys Res Commun 2009;390:263-8. https://doi.org/10.1016/j.bbrc.2009.09.104
  21. Samaranayake LP, Raeside JM, MacFarlane TW. Factors affecting the phospholipase activity of Candida species in vitro. Sabouraudia 1984;22:201-7. https://doi.org/10.1080/00362178485380331
  22. Barrett-Bee K, Hayes Y, Wilson RG, Ryley JF. A comparison of phospholipase activity, cellular adherence and pathogenicity of yeasts. J Gen Microbiol 1985;131:1217-21.
  23. Banno Y, Yamada T, Nozawa Y. Secreted phospholipases of the dimorphic fungus, Candida albicans: separation of three enzymes and some biological properties. Sabouraudia 1985; 23:47-54. https://doi.org/10.1080/00362178585380081
  24. Hoover CI, Jantapour MJ, Newport G, Agabian N, Fisher SJ. Cloning and regulated expression of the Candida albicans phospholipase B (PLB1) gene. FEMS Microbiol Lett 1998;167: 163-9. https://doi.org/10.1111/j.1574-6968.1998.tb13223.x
  25. Pugh D, Cawson RA. The cytochemical localization of phospholipase in Candida albicans infecting the chick chorioallantoic membrane. Sabouraudia 1977;15:29-35. https://doi.org/10.1080/00362177785190061
  26. Hube B, Hess D, Baker CA, Schaller M, Schäfer W, Dolan JW. The role and relevance of phospholipase D1 during growth and dimorphism of Candida albicans. Microbiology 2001; 147(Pt 4):879-89. https://doi.org/10.1099/00221287-147-4-879
  27. Leidich SD, Ibrahim AS, Fu Y, Koul A, Jessup C, Vitullo J, Fonzi W, Mirbod F, Nakashima S, Nozawa Y, et al. Cloning and disruption of caPLB1, a phospholipase B gene involved in the pathogenicity of Candida albicans. J Biol Chem 1998; 273:26078-86. https://doi.org/10.1074/jbc.273.40.26078
  28. Sugiyama Y, Nakashima S, Mirbod F, Kanoh H, Kitajima Y, Ghannoum MA, Nozawa Y. Molecular cloning of a second phospholipase B gene, caPLB2 from Candida albicans. Med Mycol 1999;37:61-7.
  29. Naglik JR, Rodgers CA, Shirlaw PJ, Dobbie JL, Fernandes- Naglik LL, Greenspan D, Agabian N, Challacombe SJ. Differential expression of Candida albicans secreted aspartyl proteinase and phospholipase B genes in humans correlates with active oral and vaginal infections. J Infect Dis 2003; 188:469-79. https://doi.org/10.1086/376536
  30. Kunze D, Melzer I, Bennett D, Sanglard D, MacCallum D, Nörskau J, Coleman DC, Odds FC, Schäfer W, Hube B. Functional analysis of the phospholipase C gene CaPLC1 and two unusual phospholipase C genes, CaPLC2 and CaPLC3, of Candida albicans. Microbiology 2005;151(Pt 10):3381-94. https://doi.org/10.1099/mic.0.28353-0
  31. Ella KM, Dolan JW, Qi C, Meier KE. Characterization of Saccharomyces cerevisiae deficient in expression of phospholipase D. Biochem J 1996;314(Pt 1):15-9. https://doi.org/10.1042/bj3140015
  32. Waksman M, Eli Y, Liscovitch M, Gerst JE. Identification and characterization of a gene encoding phospholipase D activity in yeast. J Biol Chem 1996;271:2361-4. https://doi.org/10.1074/jbc.271.5.2361
  33. Sreenivas A, Patton-Vogt JL, Bruno V, Griac P, Henry SA. A role for phospholipase D (Pld1p) in growth, secretion, and regulation of membrane lipid synthesis in yeast. J Biol Chem 1998;273:16635-8. https://doi.org/10.1074/jbc.273.27.16635
  34. Xie Z, Fang M, Rivas MP, Faulkner AJ, Sternweis PC, Engebrecht JA, Bankaitis VA. Phospholipase D activity is required for suppression of yeast phosphatidylinositol transfer protein defects. Proc Natl Acad Sci U S A 1998;95:12346-51. https://doi.org/10.1073/pnas.95.21.12346
  35. McLain N, Dolan JW. Phospholipase D activity is required for dimorphic transition in Candida albicans. Microbiology 1997;143(Pt 11):3521-6. https://doi.org/10.1099/00221287-143-11-3521
  36. Kanoh H, Nakashima S, Zhao Y, Sugiyama Y, Kitajima Y, Nozawa Y. Molecular cloning of a gene encoding phospholipase D from the pathogenic and dimorphic fungus, Candida albicans. Biochim Biophys Acta 1998;1398:359-64. https://doi.org/10.1016/S0167-4781(98)00067-0
  37. Kronstad JW, Attarian R, Cadieux B, Choi J, D'Souza CA, Griffiths EJ, Geddes JM, Hu G, Jung WH, Kretschmer M, et al. Expanding fungal pathogenesis: Cryptococcus breaks out of the opportunistic box. Nat Rev Microbiol 2011;9:193-203. https://doi.org/10.1038/nrmicro2522
  38. Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG, Chiller TM. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS 2009;23:525-30. https://doi.org/10.1097/QAD.0b013e328322ffac
  39. Garcia-Martos P, Marin P, Hernandez-Molina JM, García- Agudo L, Aoufi S, Mira J. Extracellular enzymatic activity in 11 Cryptococcus species. Mycopathologia 2001;150:1-4. https://doi.org/10.1023/A:1010868223582
  40. Chen SC, Muller M, Zhou JZ, Wright LC, Sorrell TC. Phospholipase activity in Cryptococcus neoformans: a new virulence factor ? J Infect Dis 1997;175:414-20. https://doi.org/10.1093/infdis/175.2.414
  41. Vidotto V, Sinicco A, Di Fraia D, Cardaropoli S, Aoki S, Ito- Kuwa S. Phospholipase activity in Cryptococcus neoformans. Mycopathologia 1996;136:119-23. https://doi.org/10.1007/BF00438916
  42. Chen SC, Wright LC, Santangelo RT, Muller M, Moran VR, Kuchel PW, Sorrell TC. Identification of extracellular phospholipase B, lysophospholipase, and acyltransferase produced by Cryptococcus neoformans. Infect Immun 1997; 65:405-11.
  43. Wright LC, Santangelo RM, Ganendren R, Payne J, Djordjevic JT, Sorrell TC. Cryptococcal lipid metabolism: phospholipase B1 is implicated in transcellular metabolism of macrophage-derived lipids. Eukaryot Cell 2007;6:37-47. https://doi.org/10.1128/EC.00262-06
  44. Ganendren R, Widmer F, Singhal V, Wilson C, Sorrell T, Wright L. In vitro antifungal activities of inhibitors of phospholipases from the fungal pathogen Cryptococcus neoformans. Antimicrob Agents Chemother 2004;48:1561-9. https://doi.org/10.1128/AAC.48.5.1561-1569.2004
  45. Himmelreich U, Allen C, Dowd S, Malik R, Shehan BP, Mountford C, Sorrell TC. Identification of metabolites of importance in the pathogenesis of pulmonary cryptococcoma using nuclear magnetic resonance spectroscopy. Microbes Infect 2003;5:285-90. https://doi.org/10.1016/S1286-4579(03)00028-5
  46. Santangelo R, Zoellner H, Sorrell T, Wilson C, Donald C, Djordjevic J, Shounan Y, Wright L. Role of extracellular phospholipases and mononuclear phagocytes in dissemination of cryptococcosis in a murine model. Infect Immun 2004; 72:2229-39. https://doi.org/10.1128/IAI.72.4.2229-2239.2004
  47. Djordjevic JT, Del Poeta M, Sorrell TC, Turner KM, Wright LC. Secretion of cryptococcal phospholipase B1 (PLB1) is regulated by a glycosylphosphatidylinositol (GPI) anchor. Biochem J 2005;389(Pt 3):803-12. https://doi.org/10.1042/BJ20050063
  48. Turner KM, Wright LC, Sorrell TC, Djordjevic JT. N-linked glycosylation sites affect secretion of cryptococcal phospholipase B1, irrespective of glycosylphosphatidylinositol anchoring. Biochim Biophys Acta 2006;1760:1569-79. https://doi.org/10.1016/j.bbagen.2006.07.002
  49. Chayakulkeeree M, Sorrell TC, Siafakas AR, Wilson CF, Pantarat N, Gerik KJ, Boadle R, Djordjevic JT. Role and mechanism of phosphatidylinositol-specific phospholipase C in survival and virulence of Cryptococcus neoformans. Mol Microbiol 2008;69:809-26.
  50. Ashbee HR. Recent developments in the immunology and biology of Malassezia species. FEMS Immunol Med Microbiol 2006;47:14-23. https://doi.org/10.1111/j.1574-695X.2006.00057.x
  51. Hort W, Mayser P. Malassezia virulence determinants. Curr Opin Infect Dis 2011;24:100-5. https://doi.org/10.1097/QCO.0b013e328342f787
  52. Xu J, Saunders CW, Hu P, Grant RA, Boekhout T, Kuramae EE, Kronstad JW, Deangelis YM, Reeder NL, Johnstone KR, et al. Dandruff-associated Malassezia genomes reveal convergent and divergent virulence traits shared with plant and human fungal pathogens. Proc Natl Acad Sci U S A 2007;104:18730-5. https://doi.org/10.1073/pnas.0706756104
  53. Thompson E, Colvin JR. Composition of the cell wall of Pityrosporum ovale (Bizzozero) Castellani and Chalmers. Can J Microbiol 1970;16:263-5. https://doi.org/10.1139/m70-048
  54. Kesavan S, Holland KT, Ingham E. The effects of lipid extraction on the immunomodulatory activity of Malassezia species in vitro. Med Mycol 2000;38:239-47. https://doi.org/10.1080/mmy.38.3.239.247
  55. Ran Y, Yoshiike T, Ogawa H. Lipase of Malassezia furfur: some properties and their relationship to cell growth. J Med Vet Mycol 1993;31:77-85. https://doi.org/10.1080/02681219380000081
  56. Brunke S, Hube B. MfLIP1, a gene encoding an extracellular lipase of the lipid-dependent fungus Malassezia furfur. Microbiology 2006;152(Pt 2):547-54. https://doi.org/10.1099/mic.0.28501-0
  57. Shibata N, Okanuma N, Hirai K, Arikawa K, Kimura M, Okawa Y. Isolation, characterization and molecular cloning of a lipolytic enzyme secreted from Malassezia pachydermatis. FEMS Microbiol Lett 2006;256:137-44. https://doi.org/10.1111/j.1574-6968.2006.00106.x
  58. Xu T, Liu L, Hou S, Xu J, Yang B, Wang Y, Liu J. Crystal structure of a mono- and diacylglycerol lipase from Malassezia globosa reveals a novel lid conformation and insights into the substrate specificity. J Struct Biol 2012;178:363-9. https://doi.org/10.1016/j.jsb.2012.03.006
  59. Liu L, Gao C, Lan D, Yang B, Wang Y. Molecular basis for substrate selectivity of a mono- and diacylglycerol lipase from Malassezia globosa. Biochem Biophys Res Commun 2012;424: 285-9. https://doi.org/10.1016/j.bbrc.2012.06.108
  60. Juntachai W, Oura T, Kajiwara S. Purification and characterization of a secretory lipolytic enzyme, MgLIP2, from Malassezia globosa. Microbiology 2011;157(Pt 12):3492-9. https://doi.org/10.1099/mic.0.054528-0
  61. Juntachai W, Oura T, Murayama SY, Kajiwara S. The lipolytic enzymes activities of Malassezia species. Med Mycol 2009; 47:477-84. https://doi.org/10.1080/13693780802314825