DOI QR코드

DOI QR Code

A Study for Context-Awareness based on Multi-Sensor in the Smart-Clothing

스마트의류에서 멀티센서 기반의 상황인지에 관한 연구

  • 박현문 (전자통신연구원 SW-SoC 융합센터) ;
  • 전병찬 (한세대학교 전자소프트웨어공학) ;
  • 류대현 (한세대학교 전자소프트웨어공학)
  • Received : 2013.02.18
  • Accepted : 2013.06.14
  • Published : 2013.06.30

Abstract

In this paper, we propose a method to infer the user's behavior and situation through collected data from multi-sensor equipped with a smart clothing and it was implemented as a smartphone App. User context reasoning and behavior determine is very difficult using single sensor depending on the measured value of the sensor varies from environmental noise. So, the reasoning and the digital filter algorithms to determine user behavior reducing noise and are required. In this paper, we used EWMA, Kalman Filter and SVM processing behavior for 3-axis value as a representative value of one.

본 논문은 스마트의류에 멀티센서를 장착하고 이를 통해 수집된 데이터를 기반으로 사용자 상황 및 행동을 추론하는 기법을 제안하고 이를 스마트폰 앱으로 구현하였다. 단일 센서로 사용자 상황 및 행동 추론은 매우 어려우며, 외 내부 환경, 온도, 진동 등에 따라 센서의 측정값이 달라지는 잡음환경에서, 잡음을 줄이면서도 사용자 행동을 판단할 수 있는 디지털 필터와 추론 알고리즘이 요구된다. 본 논문에서 EWMA과 칼만필터를 적용하고, 행동인지를 위한 3축 값을 하나의 대표 값으로 처리하는 SVM을 사용하였다.

Keywords

References

  1. Sharon Baurley, "Interactive and experiential design in smart textile products and applications", Personal and Ubiquitous Computing, No.8, pp.274-281, 2004
  2. K.S. Jung, "Smart Clothing : The Convergence of Computer and Clothing", The Journal of Information Processing, Vol. 17, No. 5, Sept. 2010.
  3. NEMA Disaster Dispatch, "Analysis and Forecas of Overall disaster situation", pp. 1-66 , oct. 2012.
  4. K.Y. Yoo, "This World through Statistics", Vol.112, Road Traffic Authority
  5. H.Alemdar. and C. Ersoy, "Wireless sensor networks for healthcare: A survery", Computer Networks, vol.54, issue 15, pp.2688-2710, 2010. https://doi.org/10.1016/j.comnet.2010.05.003
  6. P.S. Pandian, K. Mohanavelu, etc. " Smart vest: Wearable multi-parameter remote physiological monitoring system", Medical Engineering& Physics, vol. 30, issue 4, pp. 466-477, 2008 https://doi.org/10.1016/j.medengphy.2007.05.014
  7. J. Luparano and O.Chetelat, "Sensors and parameter extraction by wearable system: Present situation and future", Preceding of International Workshop on Wearable Micro and Nanosystems of Personalized Health, 2008.
  8. Keijser N.: "Ambulatory Motor Assessment in Parkinson's Disease", Movement Disorders Vol. 21 Issue 1, pp. 34-44, Jan. 2006. https://doi.org/10.1002/mds.20633
  9. Ryo Takeda; Shigeru Tadano; Akiko Natorigawa; Masahiro Todoh; Satoshi Yoshinari , "Gait posture estimation using wearable acceleration and gyro sensors," Journal of Biomechanics , pp. 2486-2494, November 2009.
  10. Smailagic, A, Siewiorek, D.P, and Deisher, M. "Activity recognition and monitoring using multiple sensors on different body positions," BSN 2006. pp.113-116, 2006.
  11. Zhu, C. "Realtime Recognition of Complex Human Daily Activities Using Human Motion and Location Data, Biomedical Engineering," IEEE Transactions on, vol 59, no. 9, pp.242-2430, 2012.
  12. B .C. Jeoun, H. M. Park, W. K. Park, S. C. Lee, "Multi-sensor Measurement Techniques for Smart ware Prototyping System," Summer Conference of IEEK, Vol. 15, 2012.6
  13. Y.B Jung, K.H Kwon, D.S Kang, "The Implementation of Monitoring Service System using Vital Sign Information of Patient," Journal of the Korea Academia-Industrial cooperation Society, vol.10, no.3, march. 2012.

Cited by

  1. A Study on Improvement of Wave Height Algorithm using Accelerometer vol.14, pp.6, 2014, https://doi.org/10.7236/JIIBC.2014.14.6.215