DOI QR코드

DOI QR Code

Immunomodulatory and Antigenotoxic Properties of Bacillus amyloliquefaciens KU801

면역조절능과 유전독성 억제능을 가지는 Bacillus amyloliquefaciens KU801

  • Lee, Na-Kyoung (Division of Animal Life Science and Bio/Molecular Informatics Center, Konkuk University) ;
  • Kim, So-Yeon (Division of Animal Life Science and Bio/Molecular Informatics Center, Konkuk University) ;
  • Chang, Hyo-Ihl (School of Life Sciences and Biotechnology, Korea University) ;
  • Park, Eunju (Department of Food Nutrition, Kyungnam University) ;
  • Paik, Hyun-Dong (Division of Animal Life Science and Bio/Molecular Informatics Center, Konkuk University)
  • 이나경 (건국대학교 동물생명과학대학 생명분자정보학센터) ;
  • 김소연 (건국대학교 동물생명과학대학 생명분자정보학센터) ;
  • 장효일 (고려대학교 생명환경과학대학) ;
  • 박은주 (경남대학교 식품영양학과) ;
  • 백현동 (건국대학교 동물생명과학대학 생명분자정보학센터)
  • Received : 2013.01.23
  • Accepted : 2013.04.03
  • Published : 2013.06.28

Abstract

The Bacillus KU801 strain, due to its potential in the field of probiotics for animal use, was isolated from chicken feces. Strain KU801 was identified as Bacillus amyloliquefaciens KU801 based on the results of 16S rRNA sequencing. Vegetative and spore cells of B. amyloliquefaciens KU801 were resistant to artificial gastric juice and artificial bile acid. B. amyloliquefaciens KU801 was found to inhibit the production of nitric oxide (NO) and increase the production of Interleukin-1 alpha (IL-1${\alpha}$). DNA damage induced by N-methyl-Ntion of ninitroso-guanidine (MNNG) was significantly inhibited, in a dose dependent manner, by preincubating MNNG together with B. amyloliquefaciens KU801. These results demonstrate the potential use of B. amyloliquefaciens KU801 as a feed additive.

닭분변으로부터 면역활성능이 뛰어난 KU801 균주를 분리하고 16S rRNA 서열분석을 통해 Bacillus amyloliquefaciens KU801로 동정하였다. B. amyloliquefaciens KU801의 영양세포와 아포세포는 인공위액 (pH 2.5, 1% pepsin)과 인공담즙 (0.3% oxgall)에 대한 저항성을 나타내었다. B. amyloliquefaciens KU801은 산화질소 (NO)의 생산을 감소시켰으나 인터루킨-$1{\alpha}$ (IL-$1{\alpha}$)의 생산은 증가시키는 것을 확인하였다. Commet assay를 통한 유전독성능에 미치는 영향을 확인한 결과, B. amyloliquefaciens KU801을 첨가하였을 때 DNA 손상을 처리 농도에 비례하여 감소시키는 것을 확인하였다. 이들 결과를 토대로, B. amyloliquefaciens KU801은 사료용 정장제로서의 이용 가능성을 확인할 수 있었다.

Keywords

References

  1. Chang, J. H., Y. Y. Shim, S. H. Kim, K. M. Chee, and S. K. Cha. 2005. Fibrinolytic and immunostimulating activities of Bacillus spp. strains isolated from chungkuk-jang. Korean J. Food Sci. Technol. 37: 255-260.
  2. Chen, S., Q. Zhao, L. R. Ferquson, Q. Shu, I. Weir, and S. Garg. 2012. Development of a novel probiotic delivery system based on microencapsulation with protectants. Appl. Microbiol. Biotechnol. 93: 1447-1457. https://doi.org/10.1007/s00253-011-3609-4
  3. Cho, I. J., N. K. Lee, and Y. T. Hahm. 2009. Characterization of Lactobacillus spp. isolated from the feces of breast-feeding piglets. J. Biosci. Bioeng. 108: 194-198.
  4. Chung, S. and S. D. Kim. 2005. Biological control of phytopathogenic fungi by Bacillus amyloliquefaciens 7079: suppression rates are better than popular chemical fungicides. J. Microbiol. Biotechnol. 15: 1011-1021.
  5. Fernandez, M. F., S. Boris, and C. Barbes. 2003. Probiotic properties of human lactobacilli strains to be used in the gastrointestinal tract. J. Appl. Microbiol. 94: 449-455. https://doi.org/10.1046/j.1365-2672.2003.01850.x
  6. Hong, H. A., L. H. Duc, and S. M. Cutting. 2005. The use of bacterial spore formers as probiotics. FEMS Microbiol. Rev. 29: 813-835. https://doi.org/10.1016/j.femsre.2004.12.001
  7. Ippoushi, K., H. Itou, K. Azuma, and H. Higashio. 2002. Effect of naturally occurring organosulfur compounds on nitric oxide production in lipopolysaccharide-activated macrophages. Life Sci. 71: 411-419. https://doi.org/10.1016/S0024-3205(02)01685-5
  8. Jun, K. D., H. J. Kim, K. H. Lee, H. D. Paik, and J. S. Kang. 2002. Characterization of Bacillus polyfermenticus SCD as a probiotic. Korean J. Microbiol. Biotechnol. 30: 359-366.
  9. Kim, J. W., K. D. Jun, J. S. Kang, J. S. Jang, B. J. Ha, and J. H. Lee. 2005. Characterization of Bacillus licheniformis as a probiotic. Korean J. Biotechnol. Bioeng. 20: 359-362.
  10. Kim, S. S., J. H. Lee, Y. S. Ahn, J. H. Kim, and D. K. Kang. 2003. A fibrinolytic enzyme from Bacillus amyloliquefaciens D4-7 isolated from chungkook-jang; its characterization and influence of additives on thermostability. Korean J. Microbiol. Biotechol. 31: 271-276.
  11. Kobayashi, Y., K. Toyama, and T. Terashima. 1974. Tolerance of the multiple antibiotic resistant strains, L. casei PSR 3002, to artificial digestive fluids. Jpn. J. Microbiol. 29: 691-697.
  12. Lim, S. D., K. S. Kim, S. A. Cho, and J. R. Do. 2010. Physiological characteristics and immunomodulating activity by Lactobacillus paracasei subsp. paracasei BF146 isolated from new-born infant feces. Korean J. Food Sci. Ani. Resour. 30: 223-231. https://doi.org/10.5851/kosfa.2010.30.2.223
  13. Lin, C. C., M. J. Lu, S. J. Chen, and S. C. Ho. 2006. Heavy fermentation impacts NO-suppressing activity of tea in LPS-activated RAW 264.7 macrophages. Food Chem. 98: 483-489. https://doi.org/10.1016/j.foodchem.2005.05.085
  14. Rangavajhyala, N., M. Shahani, G. Sridevi, and S. Srikumaran. 1997. Nonlipopolysaccharide components of Lactobacillus acidophilus stimulate the production of interleukin-1a and tumor necrosis factor-a by murine macrophages. Nutr. Cancer 28: 130-134. https://doi.org/10.1080/01635589709514564
  15. Singh, N. P., M. T. McCoy, R. R. Tice, and E. L. Schneider. 1988. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175: 184-191. https://doi.org/10.1016/0014-4827(88)90265-0
  16. Sreekumar, G. and K. Soundarajan. 2010. Isolation and characterization of probiotic Bacillus subtilis SK09 from dairy effluent. Ind. J. Sci. Technol. 3: 863-866.

Cited by

  1. 뽕잎 장아찌로부터 분리된 Lactobacillus plantarum 균주의 유해균 증식 억제 활성 vol.44, pp.2, 2016, https://doi.org/10.4014/mbl.1602.02004