DOI QR코드

DOI QR Code

Enzymatic Extraction of Pilocarpine from Pilocarpus jaborandi

Pilocarpus jaborandi로부터 필로카르핀의 효소반응추출

  • Cho, Jun-Ho (Department of Pharmaceutical Engineering, Sunmoon University) ;
  • Bhattarai, Saurabh (Department of Pharmaceutical Engineering, Sunmoon University) ;
  • Oh, Tae-Jin (Department of Pharmaceutical Engineering, Sunmoon University) ;
  • Jang, Jong Hwa (Department of Dental Hygiene, Hanseo University)
  • Received : 2013.03.25
  • Accepted : 2013.04.25
  • Published : 2013.06.28

Abstract

Pilocarpine is an imidazole alkaloid, found exclusively in the Pilocarpus genus, with huge pharmaceutical importance. In order to extract pilocarpine from Pilocarpus jaborandi, environmentally friendly enzyme-assisted extraction was applied. Viscozyme$^{(R)}$ L, a commercially available enzyme cocktail, was used for the study. The conditions for extraction were optimized on the basis of substrates, enzymes, temperatures and pHs. Optimum conditions for extraction with the highest yield were 30 h reaction of 100 mg substance at $45^{\circ}C$ in 40 ml of 50 mM acetic acid, pH 4. A 10% enzyme concentration was found to be the best for extraction. Total pilocarpine content after extraction was analyzed by HPLC. The total pilocarpine content ($1.14{\mu}g/mg$) obtained from Viscozyme$^{(R)}$ L treatment was 3.08-fold greater than those of the control treatment ($0.37{\mu}g/mg$).

필로카르핀은 Pilocarpus 속으로부터 유일하게 분리되는 이미다졸계 알칼로이드로서 상당히 제약적으로 중요하다. Pilocarpus jaborandi로부터 필로카르핀을 추출하기 위하여 환경친화적인 효소를 이용한 추출법을 이용하였다. 본 연구에서는 상업적으로 이용할 수 있는 효소칵테일인 Viscozyme$^{(R)}$L을 사용하였다. 추출 조건은 기질, 효소, 온도 및 pH 등에 기초하여 최적화되었다. 가장 높은 수율을 위한 최적화 조건은 pH4인 50 mM 아세트산 40 ml 하에서 $45^{\circ}C$, 100 mg 기질, 30시간 반응이였다. 최적의 추출 효소농도는 10%이였다. Viscozyme$^{(R)}$L 처리로부터 얻어진 전체 필로카르핀 함유량($1.14{\mu}g/mg$) 수준은 기존 처리방법에서 얻어지는 양($0.37{\mu}g/mg$)보다 3.08배 높은 것을 확인하였다.

Keywords

References

  1. Ahn, S. C., M. S. Kim, S. Y. Lee, J. H. Kang, B. H. Kim, W. K. Oh, B. Y. Kim, and J. S. Ahn. 2005. Increase of bioactive flavonoid aglycone extractable from Korean citrus peel by carbohydrate- hydrolyzing enzymes. Korean J. Microbiol. Biotechnol. 33: 288-294.
  2. Andrade-Neto, M., P. H. Mendes, and E. R. Silveira. 1996. An imidazole alkaloid and other constituents from Pilocarpus trachyllophus. Phytochemistry 42: 885-887. https://doi.org/10.1016/0031-9422(95)00852-7
  3. Avancini, G., I. N. Abreu, M. D. Saldana, R. S. Mohamed, and P. Mazzafera. 2003. Induction of pilocarpine formation in jaborandi leaves by salicylic acid and methyljasmonate. Phytochemistry 63: 171-175. https://doi.org/10.1016/S0031-9422(03)00102-X
  4. Cacace, J. E. and G. Mazza. 2003. Mass transfer process during extraction of phenolic compounds from milled berries. J. Food Eng. 59: 379-389. https://doi.org/10.1016/S0260-8774(02)00497-1
  5. Davies, A. N. and K. D. Broadley. 2001. Beighton, Xerostomia in patients with advanced cancer. J. Pain Symp. Manag. 22: 820-825. https://doi.org/10.1016/S0885-3924(01)00318-9
  6. Dewick, P. M. 1997. Medicinal natural products: A biosynthetic approach. John Wiley & Sons.
  7. Fan, T. Y., G. M. Wall, K. Sternitzke, L. Bass, A. B. Morton, and E. Muegge. 1996. Improved high-performance liquid chromatographic determination of pilocarpine and its degradation products in ophthalmic solutions: importance of octadecylsilane column choice. J. Chromatogr. A. 740: 289-295. https://doi.org/10.1016/0021-9673(96)00120-3
  8. Fen, L. L., R. M. Illias, K. Kamaruddin, M. Y. Maskat, and O. Hassan. 2006. Development of rapid screening method for low-yielding chitosanase activity using remazol brilliant bluechitosan as substrate. Enzyme Microb. Technol. 38: 215-219. https://doi.org/10.1016/j.enzmictec.2005.06.006
  9. Gardossi, L., P. B. Poulsen, A. Ballesteros, K. Hult, V. K. Svedas, D. Vasi -Racki, G. Carrea, A. Magnusson, A. Schmid, R. Wohlgemuth, and P. J. Halling. 2009. Guidelines for reporting of biocatalytic reactions. Trends Biotechnol. 28: 171-180.
  10. Landbo, A. K. and A. S. Meyer. 2001. Enzyme-assisted extraction of antioxidative phenols from black currant juice press residues (Ribes nigrum). J. Agric. Food Chem. 49: 3169-3177. https://doi.org/10.1021/jf001443p
  11. Liyana-Pathirana, C. and F. Shahidi. 2005. Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Chem. 93: 47-56. https://doi.org/10.1016/j.foodchem.2004.08.050
  12. Meyer, A. S., S. M. Jepsen, and N. S. Sørensen. 1998. Enzymatic release of antioxidants for human low-density lipoprotein from grape pomace. J. Agric. Food Chem. 46: 2439-2446. https://doi.org/10.1021/jf971012f
  13. Meyer, A. S. 2010. Enzyme technology for precision functional food ingredients processes. Ann. N. Y. Acad. Sci. 1190: 126-132. https://doi.org/10.1111/j.1749-6632.2009.05255.x
  14. Migdal, C. 2000. Glaucoma medical treatment: philosophy, principles and practice. Eye 14: 515-518. https://doi.org/10.1038/eye.2000.138
  15. Pinelo, M., B. Zornoza, and A. S. Meyer. 2008. Selective release of phenols from apple skin: mass transfer kinetics during solvent and enzyme-assisted extraction. Sep. Purif. Technol. 63: 620-627. https://doi.org/10.1016/j.seppur.2008.07.007
  16. Pinelo, M., A. Arnous, and A. S. Meyer. 2006. Upgrading of grape skins: signicance of plant cell-wall structural components and extraction techniques for phenol release. Trends Food Sci. Technol. 17: 579-590. https://doi.org/10.1016/j.tifs.2006.05.003
  17. Pinheiro, C. U. B. 1997. Jaborandi (Pilocarpus sp., Tutaceae): a wild species and its rapid transformation into a crop. Econ. Bot. 51: 49-58. https://doi.org/10.1007/BF02910403
  18. Pinheiro, C. U. B. 2002. Extrativism, cultivation and privatization jaborandi (Pilocarpus microphyllus Stapf ex Holm.; Rutaceae) in Maranhao, Brasil. Acta. Bot. Bras. 16: 141-150. https://doi.org/10.1590/S0102-33062002000200002
  19. Saldana, M. D., R. S. Mohamed, M. G. Baer, and P. Mazzafera. 1999. Extraction of purine alkaloids from mat (Ilex paraguariensis) using supercritical CO2. J. Agric. Food Chem. 47: 3804-3808. https://doi.org/10.1021/jf981369z
  20. Sørensen, H. R., S. Pedersen, V. N. Anders, and A. S. Meyer. 2005. Efficiencies of designed enzyme combinations in releasing arabinose and xylose from wheat arabinoxylan in an industrial ethanol fermentation residue. Enzyme Microb. Technol. 36: 773-784. https://doi.org/10.1016/j.enzmictec.2005.01.007
  21. Teo, C. C., S. N. Tan, J. W. Yong, C. S. Hew, and E. S. Ong. 2010. Pressurized hot water extraction (PHWE). J. Chromatogr. A. 1217: 2484-2494. https://doi.org/10.1016/j.chroma.2009.12.050
  22. Vieira, R. F. 1999. Conservation of medicinal and aromatic plants in Brazil. In: Janick, J. (Ed.), Perspectives on New Crops and New Uses, pp. 152-159. ASHS Press. Alexandria.
  23. Weinberg, Z. G., B. Akiri, E. Potoyevski, and J. Kanner. 1999. Enhancement of polyphenol recovery from rosemary (Rosmarinus officinalis) and sage (Salvia officinalis) by enzymeassisted ensiling (ENLAC). J. Agric. Food Chem. 47: 2959- 2962. https://doi.org/10.1021/jf981317+
  24. Wettasinghe, M. and F. Shahidi. 1999. Antioxidant and free radical-scavenging properties of ethanolic extracts of defatted borage (Borago ofcinalis L.) seeds. Food Chem. 67: 399-414. https://doi.org/10.1016/S0308-8146(99)00137-5
  25. Yang, B., Y. Jiang, J. Shi, F. Chen, and M. Ashraf. 2011. Extraction and pharmacological properties of bioactive compounds from longan (Dimocarpus longan Lour.) fruit-a review. Food Res. Int. 44: 1837-1842. https://doi.org/10.1016/j.foodres.2010.10.019
  26. Zheng, H. Z., H. R. Lee, S. H. Lee, C. S. Kim, and S. K. Chung. 2008. Pectinase assisted extraction of polyphenol from apple pomace. Chin. J. Anal. Chem. 36: 306-310.

Cited by

  1. Enzyme-assisted extraction of polyphenols from green yerba mate vol.22, pp.None, 2013, https://doi.org/10.1590/1981-6723.22217
  2. Promising Green Technology in Obtaining Functional Plant Preparations: Combined Enzyme-Assisted Supercritical Fluid Extraction of Flavonoids Isolation from Medicago Sativa Leaves vol.14, pp.11, 2021, https://doi.org/10.3390/ma14112724