DOI QR코드

DOI QR Code

Isolation and Chemical Analysis of Potent Anti-Complementary Polysaccharides from Fruiting Bodies of the Fomes fomentarius

말굽버섯 자실체에서 분리한 항보체 활성 다당체의 화학적 분석

  • Park, Jung-Keun (Agricultural Biotechnology Department, National Academy of Agricultural Science, RDA) ;
  • Park, Kwe-Won (Department of Food Science & Biotechnology, Sunckyunkwan University) ;
  • Shin, Kwang-Soon (Department of Food Science & Biotechnology, Kyonggi University) ;
  • Lee, Chang-Muk (Agricultural Biotechnology Department, National Academy of Agricultural Science, RDA) ;
  • Seok, Soon-Ja (Agricultural Biology Department, National Academy of Agricultural Science, RDA) ;
  • Kim, Jeong-Bong (Agro-food Department, National Academy of Agricultural Science, RDA) ;
  • Koo, Bon-Sung (Agricultural Biotechnology Department, National Academy of Agricultural Science, RDA) ;
  • Han, Bum-Soo (Agricultural Biotechnology Department, National Academy of Agricultural Science, RDA) ;
  • Yoon, Sang-Hong (Agricultural Biotechnology Department, National Academy of Agricultural Science, RDA)
  • 박정근 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 박계원 (성균관대학교 식품생명공학과) ;
  • 신광순 (경기대학교 식품생물공학과) ;
  • 이창묵 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 석순자 (농촌진흥청 국립농업과학원 농업생물부) ;
  • 김정봉 (농촌진흥청 국립농업과학원 농식품자원부) ;
  • 구본성 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 한범수 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 윤상홍 (농촌진흥청 국립농업과학원 농업생명자원부)
  • Received : 2012.11.01
  • Accepted : 2013.02.08
  • Published : 2013.06.28

Abstract

The five anti-complementary polysaccharides (MFKF-NP, MFKF-AP1${\alpha}$, ${\beta}$, and MFKF-AP2${\alpha}$, ${\beta}$) were separated from hot water extracts of fruiting bodies of Fomes fomentarius by two subsequent column chromatography using DEAE-sepharose FF and Concanavalin A-sepharose 4B. The order of anti-complementary activity was MFKF-AP1${\beta}$ > MFKF-AP1${\alpha}$ > MFKF-AP2${\alpha}$ > MFKF-AP2${\beta}$ > MFKF-NP > Polysaccharide Krestine (PSK). Especially, MFKF-AP1${\beta}$ among those showed the most excellent anti-complementary activity (70% of ITCH50 value at $20{\mu}g/ml$). The monosaccharide composition analysis by gas chromatography indicates that MFKF-AP1${\alpha}$ and ${\beta}$ are a kind of homoxylan consisted mainly of xylose above 97%. Molecular weight of MFKF-AP1${\beta}$, major anti-complementary polysaccharide, was estimated to be about 12,000 by high performance liquid chromatography (HPLC). After the incubation of the serum with MFKF-AP1${\beta}$ in the presence or absence of $Mg^{++}$ and $Ca^{++}$ ions, its anti-complementary activity was investigated. This result indicated that MFKF-AP1${\beta}$ seems to be activator both on the classical and the alternative pathway of complement activation.

말굽버섯의 열수추출물에서 얻은 조다당체인 MFKF-CP를 분리, 정제하기 위하여 DEAE-sepharose FF 및 ConcanavalinA-sepharose 4B를 이용한 두 차례의 연속적인 chromatography를 수행하였다. DEAE-sepharose FF에서는 3종류의 다당체(MFKF-NP, MFKF-AP1, MFKF-AP2)를 분리하였는데, 그 중에서 MFKF-AP1이 $50{\mu}g/ml$ 농도에서 70% 이상의 높은 항보체 활성을 보였다. 이어서 ConcanavalinA-sepharose 4B 칼럼을 이용해 MFKF-AP1과 MFKF-AP2 다당체로부터 각각 MFKF-AP1${\alpha}$, ${\beta}$와 MFKF-AP2${\alpha}$, ${\beta}$ 다당체를 분리하였다. 그 중에서 MFKF-AP1${\beta}$$20{\mu}g/ml$ 농도에서 70% 이상의 가장 우수한 항보체 활성을 나타내었고 그 활성 순서는 MFKF-AP1${\beta}$ > MFKF-AP1${\alpha}$ > MFKF-AP2${\alpha}$ > MFKFAP2${\beta}$ > MFKF-NP > PKS이었다. 또한, $Mg^{++}$$Ca^{++}$ 이온이 제거되거나 첨가된 상태에서의 항보체 활성 실험을 통해 말굽버섯의 주 항보체 다당체인 MFKF-AP1${\beta}$는 고전경로(classical pathway)와 대체경로(alternative pathway) 모두를 경유하여 활성을 나타내고 있음을 확인하였다. Gas chromatography에 의한 구성당 조성 분석에서는 중성다당체인 MFKF-NP를 제외하고 나머지 4종의 다당체가 xylose를 약 70-99%의 높은 비율로 함유하고 있으며 특히 주요 항보체 다당체인 MFKF-AP1${\beta}$는 xylose를 99% 함유하고 glucose(0.24%) 및 arabinose (0.66%)를 미량 함유하고 있는 매우 특이한 homoxylan이었다. 또한, MFKF-AP1${\beta}$의 분자량을 HPLC로 분석한 결과, 약 12,000 정도인 것으로 추정되었다.

Keywords

References

  1. Blumenkrantz, N. 1973. New method for quantitative determination of uronic acid. Anal. Biochem. 54: 484-489. https://doi.org/10.1016/0003-2697(73)90377-1
  2. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye-binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  3. Chen, W., Z. Zhao, S. F. Chen, and Y. Q. Li. 2008. Optimization for the production of exopolysaccharide from Fomes fomentarius in submerged culture and its antitumor effect in vitro. Bioresour. Technol. 99: 3187-3194. https://doi.org/10.1016/j.biortech.2007.05.049
  4. Chen, W., Z. Zhao, and Y. Q. Li. 2008. Simutaneous increase of mycelia bimass and intracellular polysaccharide from Fomes fomentarius and its biological function of gastric cancer intervention. Carbohydr. Polym. 85: 369-375.
  5. Cui, F. J., W. Y. Tao, Z. H. Xu, W. J. Guo, H. Y. Xu, Z. H. Ao, J. Jin, and Y. Q. Wei. 2007. Structural analysis of anti-tumor heteropolysaccharide GFPS1b from the cultured mycelia of Grifola frondosa GF9801. Bioresour. Technol. 98: 395-401. https://doi.org/10.1016/j.biortech.2005.12.015
  6. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356. https://doi.org/10.1021/ac60111a017
  7. Gao, Q. P., H. Kiyohara, J. C. Cyong, and H. Yamada. 1989. Chemical properties and anti-complementary activities of polysaccharides fractions from roots and leaves of Panax ginseng. Planta Med. 55: 9-12. https://doi.org/10.1055/s-2006-961765
  8. Ghoneum, M. and A. Jewett. 2000. Production of tumor necrosis factor-alpha and interferon-gamma from human peripheral blood lymphocytes by MGN-3, a modified arabinoxylan from rice bran, and its synergy with interleukin-2 in vitro. Cancer Detect. Prev. 24: 314-324.
  9. Ghoneum, M. 1998. Anti-HIV activity in vitro of MGN-3, an activated arabinoxylan from rice bran. Biochem. Biophys. Res. Commun. 243: 25-29. https://doi.org/10.1006/bbrc.1997.8047
  10. Yamada, H., J. C. l. Cyong, and Y. Otsuka. 1986. Purification and characterization of complement activating-acidic polysaccharide from the root of Lithospermum euchromum royle. Int. J. Immunopharmacol. 8: 71-78. https://doi.org/10.1016/0192-0561(86)90075-5
  11. Ito, H., M. Sugiura, and T. Miyazaki. 1976. Antitumor polysaccharides from the culture filtrate of Fomes formentarius. Chem. Pharm. Bull. 24: 2575.
  12. Ito, H. 1986. Effects of the antitumor agents from various natural sources on drug-metabolizing system in sarcoma 180- bearing mice. Jpn. J. Pharmacol. 40: 435-443. https://doi.org/10.1254/jjp.40.435
  13. Jones, T. M. and P. Albersheim. 1972. A gas chromatographic method for the determination of aldose and uronic acid constituents of plant cell wall polysaccharides. Plant Physiol. 49: 926-936. https://doi.org/10.1104/pp.49.6.926
  14. Kabat, E. A. and M. M. Mayer. 1964. Complement and complement fixation: in Experiment Immunology, Charles C. Thomas Publisher, Springfield, Illinois.
  15. Kojima, T., K. Tabata, W. Itoh, and T. Yanaki. 1986. Molecular weight dependence of the antitumor activity of schizophyllan. Agric. Biol. Chem. 50: 231-232. https://doi.org/10.1271/bbb1961.50.231
  16. Kweon, M. H., H. Jang, W. J. Lim, H. I. Chang, C. W. Kim, H. C. Yang, H. J. Hwang, and H. C. Sung. 1990. Anti-complementary properties of polysaccharides isolated from fruit bodies of mushroom Pleurotus ostreatus. J. Microbiol. Biotechnol. 9: 450-456.
  17. Lavia, I., D. Friesemb, S. Gereshc, Y. Hadarb, and B. Schwartza. 2006. An aqueous polysaccharide extract from the edible mushroom Pleurotus ostreatus induces anti-proliferative and pro-apoptotic effects on HT-29 colon cancer cells. Cancer Lett. 244: 61-70. https://doi.org/10.1016/j.canlet.2005.12.007
  18. Lee, J. S. 2005. Effects of Fomes fomentarius supplementation on antioxidant enzyme activities, blood glucose, and lipid profile in streptozotocin-induced diabetic rats. Nutr. Res. 25: 187-195. https://doi.org/10.1016/j.nutres.2005.01.001
  19. Lee, K. H., J. W. Lee, M. D. Han, H. Jeong, Y. I. Kim, and D. W. Oh. 1994. Correlation between anti-complementary and antitumor activity of the crude polysaccharide from Ganoderma lucidum IY009. Korean J. Appl. Microbiol. Biotechnol. 22: 45-51.
  20. Mizuno, T. and N. Ukai. 1992. Antitumor-active polysaccharides isolated from the fruiting body of Hericium erinaceum, and edible, and medicinal mushroom called Yamabushitake or Houtou. Biosci. Biotechnol. Biochem. 56: 347-348. https://doi.org/10.1271/bbb.56.347
  21. Michaelson, T. E., A. Gilje, A. B. Samuelson, K. Hogaesen, and B. S. Paulsen. 2000. Interaction between human complement and a pectin type polysaccharide fraction. PMII, from the leaves of Plantago major L. Scandinabian. J. Immunol. 52: 483-490. https://doi.org/10.1046/j.1365-3083.2000.00801.x
  22. Okawa, K., M. Takeuchi, and N. Nakamura. 2005. Immunological effects of partially hydrolyzed arabinoxylan from corn husk in mice. Biosci. Biotechnol. Biochem. 69: 19-25. https://doi.org/10.1271/bbb.69.19
  23. Okuda, T., Y. Yoshioka, T. Ikekawa, G. Chihara, and K. Nishioka. 1972. Anti-complementary activity of antitumor polysaccharides. Nature New Biol. 238: 59-60.
  24. Park, Y. M., I. T. Kim, H. J. Park, J. W. Choi, K. Y. Park, J. D. Lee, B. H. Nam, D. G. Kim, J. Y. Lee, and K. T. Lee. 2004. Anti-inflammatory and anti-nociceptive effects of the methanol extract of Fomes fomentarius. Biol. Pharm. Bull. 27: 1588- 1593. https://doi.org/10.1248/bpb.27.1588
  25. Samuelsena, A. B., I. Lunda, J. M. Djahromia, B. S. Paulsena, J. K. Wolda, and S. H. Knutsenb. 1999. Structural features and anti-complementary activity of some heteroxylan polysaccharide fractions from the seeds of Plantago major L.. Carbohydr. Polym. 38: 133-143. https://doi.org/10.1016/S0144-8617(98)00115-5
  26. Sasaki, T. and N. Takasuka. 1976, Further study of the structure of lentinan, an anti-tumor polysaccharide from Lentinus edodes. Carbohydr. Res. 47: 99-104. https://doi.org/10.1016/S0008-6215(00)83552-1
  27. Schepetkin, I. A. and M. T. Quinn. 2006. Botanical polysaccharides: macrophage immunomodulation and therapeutical potential. International Immunopharmacology 6: 317-333. https://doi.org/10.1016/j.intimp.2005.10.005
  28. Shin, K. S., K. S. Kwon, and H. C. Yang. 1992. Screening and characteristics of anti-complementary polysaccharides from Chinese medicinal herbs. J. Korean Agric. Chem. Soc. 35: 42-50.
  29. Song, W. C. and M. R. Sarrias. 2000. Complement and innate immunity. Immunopharm. 49: 187-198. https://doi.org/10.1016/S0162-3109(00)80303-3
  30. Song, C. H. 1998. Anti-complementary activity of endopolymers produced from submerged mycelial culture of higher fungi with particular reference to Lentinus edodes. Biotechnol. Lett. 20: 741-744. https://doi.org/10.1023/A:1005334719522
  31. Suzuki, H., K. Hasimoto, S. Oikawa, K., Sato, M. Osawa, and T. Yadomae. 1989. Anti-tumor and immunomodulating activities of a $\beta$-glucan obtained from liquid-cultured Grifola frondosa. Chem. Pharm. Bull. 37: 410-413. https://doi.org/10.1248/cpb.37.410
  32. Tabata, K., W. Itoh, T. Kojima, S. Kawabate, and K. Misaki. 1981. Ultrasonic degradation of schizophyllan, and antitumor polysaccharide produced by Schizophyllum commune RRIES. Carbohydr. Res. 89: 121-135. https://doi.org/10.1016/S0008-6215(00)85234-9
  33. Thomas, A. E. and I. Kimishige. 1974. Activation of alternative pathway of human complement by rabbit cells. J. Immunol. 113: 348-358.
  34. Tsukagoshi, S., Y. Hashimoto, G. Fujii, H. Kobayashi, K. Nomoto, and K. Orita. 1984. Krestin (PSK). Cancer Treat Rev 11: 131-155.
  35. Vincent, E., C. Ooi, and F. Liu. 2000. Immunomodulation and Anti-cancer activity of polysaccharide-protein complexes. Curr. Med. Chem. 7: 715-729. https://doi.org/10.2174/0929867003374705
  36. Yamada, H., T. Nagai, J. C. Cyong, Y. Otsuka, N. Shimizu, and K. Shimada. 1985. Relationship between chemical structure and anti-complementary activity of plant polysaccharides, Carbohydr. Res. 144: 101-111. https://doi.org/10.1016/0008-6215(85)85011-4
  37. Yameda, H., T. Nagai, J. C. Cyong, and Y. Otsuka. 1991. Mode of complement activation by acidic heteroglycan from the leaves of Artemisia princeps PAMP. Chem. Pham. Bull. 39: 2077-2081. https://doi.org/10.1248/cpb.39.2077
  38. Yanahira, S., H. Kiyohara, J. C. Cyong, and Y. Otsuka. 1987. Characterization of anti-complementary acidic heteroglycans from the seed of Coix lacrym-jobi var. ma-yuen. Phytochemistry 26: 3269-3275. https://doi.org/10.1016/S0031-9422(00)82485-1
  39. Yang, H. C. 1998. Structural characterization of the anti-complementary and macrophage activating polysaccharides isolated from Agaricus bisporus. Korean J. Food Sci. Technol. 30: 709-716.
  40. Yoon, S. H., J. H. Lim, Y. S. Kim, C. H. Kim, J. H. Jo, and Y. S. Hwang. 1998. Pharmacological effects of proteoglycans extracted from fruitin bodies of Fomitella fraxinea. The Korean J. Mycology 26: 511-518.
  41. Yoon, S. H. 1998. Chemical analysis of acidic proteo-heteroglycans with anti-complementary activity from the hot-water extracts of Fomitella fraxinea. The Korean J. Mycology 26: 502-510.
  42. Zhang, M., S. W. Cui, P. C. K. Cheung, and Q. Wang. 2007. Antitumor polysaccharides from mushrooms: a review on their isolation process, structural characteristics and antitumor activity. Trends in Food Science & Technology. 18: 4-19. https://doi.org/10.1016/j.tifs.2006.07.013