DOI QR코드

DOI QR Code

Study on Localized Corrosion Cracking of Alloy 600 using EN-DCPD Technique

EN-DCPD 방법을 이용한 Alloy 600 재료의 국부부식균열 연구

  • Lee, Yeon-Ju (Nuclear Materials Division, Korea Atomic Energy Research Institute) ;
  • Kim, Sung-Woo (Nuclear Materials Division, Korea Atomic Energy Research Institute) ;
  • Kim, Hong-Pyo (Nuclear Materials Division, Korea Atomic Energy Research Institute) ;
  • Hwang, Seong-Sik (Nuclear Materials Division, Korea Atomic Energy Research Institute)
  • 이연주 (한국원자력연구원, 원자력재료개발부) ;
  • 김성우 (한국원자력연구원, 원자력재료개발부) ;
  • 김홍표 (한국원자력연구원, 원자력재료개발부) ;
  • 황성식 (한국원자력연구원, 원자력재료개발부)
  • Received : 2013.02.12
  • Accepted : 2013.04.24
  • Published : 2013.04.15

Abstract

The object of this work is to establish an electrochemical noise(EN) measurement technique combined with a direct current potential drop(DCPD) method for monitoring of localized corrosion cracking of nickel-based alloy, and to analyze its mechanism. The electrochemical current and potential noises were measured under various conditions of applied stress to a compact tension specimen in a simulated primary water chemistry of a pressurized water reactor. The amplitude and frequency of the EN signals were evaluated in both time and frequency domains based on a shot noise theory, and then quantitatively analyzed using statistical Weibull distribution function. From the spectral analysis, the effect of the current application in DCPD was found to be effectively excluded from the EN signals generated from the localized corrosion cracking. With the aid of a microstructural analysis, the relationship between EN signals and the localized corrosion cracking mechanism was investigated by comparing the shape parameter of Weibull distribution of a mean time-to-failure.

Keywords

References

  1. P. L. Andresen, F. P. Ford, K. Gott, R. L. Jones, P. M. Scott, T. Shoji, R.W. Staehle and R.L. Tapping, Expert Panel Report on Proactive Materials Degradation Assessment (NUREG/CR-6923), U.S.NRC (2007).
  2. H. Fujimori, I. G. Sanchez, K. Gott, J. Heldt, S. S. Hwang, J. J. Richard, K. S. Kang, L. Kupca, A. Molander, P. Scott, K. Takamori, H. Tanaka, M. Widera, S. Yaguchi, A. Yamamoto and N. Yamashita, Stress Corrosion Cracking in Light Water Reactors : Good Practices and Lessons Learned (No. NP-T-3.13), IAEA (2011).
  3. C. A. Loto and R. A. Cottis, Corrosion, 43, 499 (1987). https://doi.org/10.5006/1.3583893
  4. J. Stewart, D. B. Wells, P. M. Scott and D. E. Williams, Corros. Sci., 33, 73 (1992). https://doi.org/10.1016/0010-938X(92)90018-X
  5. R. A. Cottis, Corrosion, 57, 265 (2001). https://doi.org/10.5006/1.3290350
  6. H. A. A. Al-Mazeedi and R. A. Cottis, Electrochim. Acta, 49, 2787 (2004). https://doi.org/10.1016/j.electacta.2004.01.040
  7. J. M. Sanchez-Amaya, R. A. Cottis and F. J. Botana, Corros. Sci., 47, 3280 (2005). https://doi.org/10.1016/j.corsci.2005.05.047
  8. T. Anita, M. G. Pujar, H. Shaikh, R. K. Dayal and H. S. Khatak, Corros. Sci., 48, 2689 (2006). https://doi.org/10.1016/j.corsci.2005.09.007
  9. S. W. Kim and H. P. Kim, Corros. Sci., 51, 191 (2009). https://doi.org/10.1016/j.corsci.2008.10.014
  10. M. A. Hicks and A. C. Pickard, Int. Journ. of Fracture, 20, 91 (1982). https://doi.org/10.1007/BF01141259
  11. W. Nelson, Applied Life Data Analysis, John Wiley & Sons, New York (1982).

Cited by

  1. Laboratorial technique for fabrication of outer diameter stress corrosion cracking on steam generator tubing vol.13, pp.3, 2014, https://doi.org/10.14773/cst.2014.13.3.112
  2. Ex situ and in situ characterization of stress corrosion cracking of nickel-base alloys at high temperature vol.18, pp.2, 2014, https://doi.org/10.1007/s10008-013-2248-3
  3. Evaluation of the corrosion behavior of a TiN-coated 316L SS bipolar plate using dynamic electrochemical impedance spectroscopy vol.42, pp.17, 2018, https://doi.org/10.1039/C8NJ01649F
  4. /polyaniline bilayer coating for 316L stainless steel bipolar plates of proton-exchange membrane fuel cells vol.8, pp.35, 2018, https://doi.org/10.1039/C8RA02161A