DOI QR코드

DOI QR Code

Corrosion Characteristics of Ti-xTa Alloys with Ta contents

Ta 함량에 따른 Ti-xTa 합금의 부식특성

  • Kim, H.J. (Department of Dental Materials & Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University) ;
  • Choe, H.C. (Department of Dental Materials & Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University)
  • 김현주 (조선대학교 치의학전문대학원 치과재료학교실 및 생체재료나노계면활성화센터) ;
  • 최한철 (조선대학교 치의학전문대학원 치과재료학교실 및 생체재료나노계면활성화센터)
  • Received : 2012.12.10
  • Accepted : 2013.02.27
  • Published : 2013.02.15

Abstract

The purpose of this study was to investigate corrosion characteristics of Ti-xTa alloys with Ta contents. Ti-xTa alloys used as samples (x=30, 40%) were arc-melted under argon atmosphere of 99.9% purity. Ti-xTa alloys were homogenized for 12hr at $1000^{\circ}C$ and then water quenched. The surface characteristics of Ti-xTa alloys were investigated using optical microscopy (OM) and X-ray diffractometer (XRD). The anodic corrosion behaviors of the specimens were examined through potentiodynamic, potentiostatic and galvanostatic test in 0.9 % NaCl solution at $36.5{\pm}1^{\circ}C$. After corrosion test, the surface characteristics of Ti-xTa alloys were investigated using OM. The microstructure of Ti-Ta alloy showed the beta structure with Ta content. The corrosion resistance of Ti alloy was improved by increasing Ta content and the corrosion morphology of Ti-Ta alloy showed that the site attacked by chloride ion decreased from the active to passive region with Ta content. Potential of Ti-40Ta alloy increased as time increased, whereas, current density of Ti-40Ta alloy decreased as time increased compared to Ti-30 alloy.

Keywords

References

  1. J. Black and G Hastings., Handbook of Biomaterial Properties. Champman & Hall 135, (1998).
  2. F. Andress von Recum., Handbook of biomaterial Evaluation Tayor & Francis 1, (1999).
  3. E. kobayashi, L. K. Gardner, R. W. Toth, J. Prosthetdent, 54, 410 (1985).
  4. M. F. Semlitsch, H. Weber, R. M. Streicher, R. Schon, Biomaterials, 13, 781 (1992). https://doi.org/10.1016/0142-9612(92)90018-J
  5. Y. Okazaki, S. Rao, S.Asao, T. Tateishi, S. katsuda, Y. Furuki, J. Japan Inst. Metals, 9, 890 (1996).
  6. A. K. shukla, R. Balasubramaniam, S. Bhargava, J. Alloys Comp, 389, 144 (2005). https://doi.org/10.1016/j.jallcom.2004.08.005
  7. D. Kuroda, M. Niiomi, Mater. Sci. Eng, A 243, 244 (2001).
  8. H. C. Choe, Thin solid Film 519, 4652 (2011). https://doi.org/10.1016/j.tsf.2011.01.011
  9. Y. L. Zhou, M. Niinomi, T. Akahori, Mater. Sci. Eng, A 384, 92 (2004). https://doi.org/10.1016/j.msea.2004.05.084
  10. Y. L. Zhou, M. Niinomi, T. Akahori, Mater. Sci. Eng, A 371, 283 (2004). https://doi.org/10.1016/j.msea.2003.12.011
  11. Y. L. Zhou, M. Niinomi, T. Akahori, H. fukui, H. Toda, Mater. Sci. Eng, A 398, 28 (2005). https://doi.org/10.1016/j.msea.2005.03.032
  12. S. E. Kim, J. H. Son, Y. T. Hyun, H. W. Jeong, Y. T. Lee, J. S. Song, J. H. Lee, Met. Mater. Int., 13, 151 (2007). https://doi.org/10.1007/BF03027566
  13. S. E. Kim, H. W. Jeong, Y. T. Hyun, Y. T. Lee, C. H. Jung, S. K. Kim, J. S. Song, J. H. Lee, Met. Mater. Int., 13, 145 (2007). https://doi.org/10.1007/BF03027565
  14. Y. L. Zhou, M. Niinomi, Materials Sci. and Eng., A 29, 1061 (2009). https://doi.org/10.1016/j.msec.2008.09.012
  15. D. Mareci, R. Chelariu, D. M.Gordin, G. Ungureanu, T. Gloriant, Acta Biomaterialia, 5, 3625 (2009). https://doi.org/10.1016/j.actbio.2009.05.037

Cited by

  1. Microstructures and Elastic Moduli of Binary Titanium Alloys Containing Biocompatible Alloying Elements vol.475-479, pp.1662-9752, 2005, https://doi.org/10.4028/www.scientific.net/MSF.475-479.2291